

AFRL-IF-RS-TR-2006-117
In-House Final Technical Report
March 2006

JOINT BATTLESPACE INFOSPHERE (JBI)
CONTENT BASED ROUTING

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-117 has been reviewed and is approved for publication

APPROVED: /s/

HELEN M. RICO
Chief, Distributed Information Systems Branch

 Information Grid Division

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2006

3. REPORT TYPE AND DATES COVERED
In-House Final, Feb 04 – Dec 05

4. TITLE AND SUBTITLE
JOINT BATTLESPACE INFOSPHERE (JBI) CONTENT BASED ROUTING

6. AUTHOR(S)
Mark D. Saeger, Capt., USAF

5. FUNDING NUMBERS
C - N/A
PE - 62702F
PR - 4519
TA - CB
WU - RP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGA
525 Brooks Road
Rome New York 13441-4505

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGA
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-117

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Mark D. Saeger, Capt., USAF/IFGA/(315) 330-7059/ Mark.Saeger@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The purpose of this effort was to integrate a hardware based eXtensible Markup Language (XML) processor into the JBI
architecture. Integration was to be invisible to the user and work seamlessly with the current client software. Changes
necessary to support plug-in hardware solutions should not require client code changes but rely solely on JBI core
framework changes. At low loading levels, the two implementations should behave similarly. The hardware assisted
JBI implementation should accelerate JBI operations under heavy loading of publication/subscribe requests with
complicated XPATH parsing requirements. It was deemed that XPATH processing and XML parsing were the two
areas most likely to suffer under extreme loads and promising areas to leverage commercial technology. A software-
based solution must ingest the whole JBI object before beginning processing. Object sizes and number of concurrent
objects processed will directly affect system responsiveness. A hardware-based solution can process objects at line
speed (e.g. 1Gb/s) as packets flow through the network. Large/complex objects will potentially slow processing down,
but in general, as bits flow on the wire the internal workings of the XML router is making decisions and taking action on
the data. Lastly, the hardware-based solution is scalable and can provide more processing power as required.

15. NUMBER OF PAGES
76

14. SUBJECT TERMS
Joint Battlespace Infosphere, JBI, Content Based Routing, XML Routing, Publish and
Subscribe Architecture 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1 Summary ... 1
2 Introduction... 1
3 Terminology.. 2
4 Setup ... 3

4.1 Database.. 3
4.2 Java SDK .. 3
4.3 Network... 3
4.4 System Hardware Configuration... 4
4.5 Configuration File... 4

4.5.1 Sample configuration file.. 5
4.5.2 server... 5
4.5.3 port .. 5
4.5.4 adminport .. 6
4.5.5 hardwareoverride .. 6
4.5.6 mode.. 6

5 Implementation Details... 6
5.1 Software Changes ... 7

5.1.1 Base64.java ... 7
5.1.2 Hardware.java ... 8
5.1.3 Listener.java.. 9
5.1.4 SubscriberSequence.java .. 9
5.1.5 PublisherSequence.java .. 10

5.2 Message Representation: .. 10
5.2.1 Subscribe Request... 11
5.2.2 Publish Request... 11

5.3 Schemas .. 12
6 Methodology... 14
7 Results and Discussion ... 16

7.1 Fast/Slow Subscription Case... 17
7.1.1 Software JBI.. 19
7.1.2 Hardware JBI .. 20
7.1.3 Analysis... 20

7.2 Steady Increase in Subscribers Case... 24
7.2.1 Software JBI.. 25
7.2.2 Hardware JBI .. 26
7.2.3 Analysis... 26

7.3 Payload Increase Case... 27
7.3.1 Software JBI.. 29
7.3.2 Hardware JBI .. 30
7.3.3 Analysis... 32

7.4 Steady Increase/Payload Increase Case .. 34

 ii

7.4.1 Software JBI.. 35
7.4.2 Hardware JBI .. 38
7.4.3 Analysis... 39

7.5 Heavy Load Case .. 41
7.5.1 Software JBI.. 42
7.5.2 Hardware JBI .. 42
7.5.3 Analysis... 43

7.6 Saturation Case ... 47
7.6.1 Software JBI.. 47
7.6.2 Hardware JBI .. 48
7.6.3 Analysis... 49

8 Follow-on Work.. 53
9 Conclusion .. 54
10 Appendix A – Raw Data ... 57

10.1 Experiment 1... 57
10.1.1 Hardware JBI – Object Size 2KB ... 57
10.1.2 Software JBI – Object Size 2KB .. 57

10.2 Experiment 2... 58
10.2.1 Hardware JBI – Object Size 2KB ... 58
10.2.2 Software JBI – Object Size 2KB .. 59

10.3 Experiment 3... 60
10.3.1 Hardware JBI – 25KB and 50KB Object Size.. 60
10.3.2 Software JBI – 25KB and 50KB Object Size ... 61

10.4 Experiment 4... 62
10.4.1 Hardware JBI – Object Size 2KB ... 62
10.4.2 Software JBI – Object Size 2KB .. 63

10.5 Experiment 5... 64
10.5.1 Hardware JBI – Object Size 2KB ... 64
10.5.2 Software JBI – Object Size 2KB .. 65

10.6 Experiment 6... 66
10.6.1 Hardware JBI – Object Size 2KB ... 66
10.6.2 Software JBI – Object Size 2KB .. 67

11 List of Acronyms .. 68

 iii

List of Figures

Figure 1 - Lab Network Configuration ... 4
Figure 2 - Sample Client XPE Configuration File.. 5
Figure 3 - Base64 Encoding.. 8
Figure 4 - Sub/Pub Sequence.. 9
Figure 5 - Message Object Representation ... 10
Figure 6 - Logical XPATH Expression Example ... 11
Figure 7 - Schema and Metadata Types.. 12
Figure 8 - jbi.rl.af.mil.ato Object Fields ... 12
Figure 9 - jbi.rl.af.mil.basic Object Fields .. 13
Figure 10 - jbi.rl.af.mil.xmlxpath Object Fields ... 13
Figure 11 - Randomization Values for Fields... 16
Figure 12 - Randomized Key Words for Fields.. 16
Figure 13 – Slow/Fast Subscriber Network Setup.. 17
Figure 14 - (a) Slow Subscriber Data, (b) Fast Subscriber Data, (c) Combined 19
Figure 15 - Performance Difference of "Slow" Subscriber .. 21
Figure 16 - Fast/Slow Subscriber Trend ... 22
Figure 17 - Delivered Objects/Second.. 23
Figure 18 - Steady Subscriber Increase Network Setup ... 24
Figure 19 - Steady Subscriber Increase Data.. 25
Figure 20 - Steady Increase Trend .. 26
Figure 21 - Delivered Objects/Second.. 27
Figure 22 - Payload Increase Network Setup ... 27
Figure 23 - Payload Increase Data, (a) Software, (b) Hardware... 28
Figure 24 - Payload Increase Trend .. 29
Figure 25 - Percent Increase over Base Object Size ... 30
Figure 26 - Payload Increase Trend .. 31
Figure 27 - Percent Increase over Base Object Size ... 32
Figure 28 - Objects Delivered/Second.. 33
Figure 29 - Steady Increase/Payload Increase Network Setup ... 34
Figure 30 - (a) Software Data, (b) Hardware Data, (c) Combined ... 35
Figure 31 – Software Object Size Percentage Impact .. 37
Figure 32 - Hardware Object Size Percentage Impact.. 39
Figure 33 - Objects Delivered/Second.. 40
Figure 34 - Heavy Load Network Setup ... 41
Figure 35 - Heavy Load Data.. 42
Figure 36- Heavy Load Trend... 44
Figure 37 - Objects Delivered/Second.. 45
Figure 38 - Subscriber Count Comparison ... 46
Figure 39 - Saturation Network Setup .. 47
Figure 40 - Saturation Data... 48
Figure 41 - Aggregate Hardware/Software Fast/Slow Subscriber.. 49
Figure 42 - Software Fast/Slow Object Processing .. 50

 iv

Figure 43 - Hardware Fast/Slow Object Processing ... 51
Figure 44 - Objects Delivered/Second.. 52
Figure 45 - Saturation Trend... 53

 v

List of Tables

Table 1- System Configuration... 4
Table 2 - Sync/Async Comparison ... 6
Table 3 - Impact of "Slow" Subscriber ... 19
Table 4 - Percent Increase due to Subscriber Load Increase .. 36
Table 5 - Percent Increase due to Payload Size Increase.. 36
Table 6 - Percent Increase due to Subscriber Load Increase .. 38
Table 7 - Percent Increase due to Payload Size Increase.. 38
Table 8 - Ratio of Published Objects to Delivered Objects .. 43
Table 9 - Percent Increase in Object and Processing Speed from Base of 4x250 48

1

1 Summary
The integration of a hardware based eXtensible Markup Language (XML) processor for
accelerating JBI performance was invisible to the user and worked seamlessly with no changes to
JBI client software and only minor changes to the JBI provided core framework. Results
gathered reflect the simplest change to the JBI framework operation in that the final step of the
publish/subscribe operation was done differently using hardware – this was to make comparisons
between both solutions as simple and fair as possible.

The experiment outcomes were not surprising. The software JBI is facing a number of hurdles
not present with the hardware JBI, most notably that the software JBI is not running on a
dedicated, XML aware, network router. At low loading levels, the two implementations behaved
similarly as was expected. Only at higher loading levels did the differences in implementation
become apparent – most notably the time required to handle the offered subscription load.
Payload size appeared to have a greater impact on both solutions than increased subscriber load.
The hardware JBI presented the counter-intuitive result of becoming more efficient under greater
loading. This result was due to the ability of the hardware to rapidly disseminate a processed
publication request at minimal cost, so under higher loading where a single published object will
fulfill a larger number of subscriptions, the hardware paid an upfront penalty then could cheaply
replicate and send it multiple times. The software JBI had to perform a software duplication of
each packet then traverse the TCP/IP stack to distribute the fulfillment to the subscribing nodes.

The data distribution abilities of both systems were captured by the objects delivered per second
metric. The hardware had a much wider range of values than the software and generally
performed better with increased subscriber loading – leveraging its inherent ability to rapidly
route published data to multiple subscribers. In the case of software, the range of behavior was
much more restricted and never exceeded the hardware speed for a given experiment. Across all
loading levels and payload sizes, hardware ranged from 14.2obj/s to 627.2obj/s and software
ranged from 16.4obj/s to 118.4obj/s. The lower bounds were similar, but the upper bounds show
an over 5x increase in objects per second processed for hardware.

The hardware JBI system was faster than the software JBI for all experiments performed. The
range of improvement was dependent on the configuration of the experiment, but improvements
ranged from 340% to 750% faster at the x2000 loading levels. Therefore, the JBI of the future
will have to have XML hardware aware routers at its foundation in order to provide the best
performance. Tangible performance and scalability benefits available from hardware will far
exceed the larger upfront cost of a dedicated hardware router.

2 Introduction
The purpose of this effort was to integrate a hardware based eXtensible Markup Language
(XML) processor into the JBI architecture. Integration was to be invisible to the user and work

2

seamlessly with the current client software. Changes necessary to support plug-in hardware
solutions should not require any changes to client code but rely totally on changes to the JBI
provided core framework.

In simple cases, at low loading levels, the two implementations should behave similarly. The
hardware assisted JBI implementation should accelerate JBI operations under heavy loading of
publication/subscribe requests with complicated XPATH parsing requirements. Investigating
how to offload CPU intensive tasks to dedicated hardware is forward thinking toward a major
problem that the JBI will face – how to handle mountains of information in an efficient and
timely manner. It was deemed that XPATH processing and XML parsing were the two areas
most likely to suffer under extreme loads and promising areas to leverage commercial
technology.

A software-based solution must ingest the whole JBI object before beginning processing. Object
sizes and number of concurrent objects processed will directly affect how responsive a software-
based system will behave. A hardware-based solution on the other hand, can process objects at
line speed (1Gb/s, 100Mb/s, 10Mb/s) as the packets flow through the network. Large/complex
objects will potentially slow processing down, but in general, as bits flow on the wire the internal
workings of the XML router is making decisions and taking action on the data. Lastly, the
hardware-based solution is scalable and can be cascaded to provide more processing power as
required.

3 Terminology
References to software JBI refer to the publication/subscription via the traditional JBI software
implementation. All JBI actions are handled by the software based JBI platform services and
software based common application programmer interface (CAPI). Hardware handles all
XPATH processing and publication/subscription processing. Server application and network
loads will directly affect the responsiveness of a software-based system

The hardware XML processor is a commercial product developed by Sarvega and has the
nomenclature XPE-2000. Sarvega worked closely with AFRL/IF to ensure that the
publish/subscribe paradigm implemented internally to their product behaved similarly to the
software JBI. References to hardware JBI refer to publishing/subscribing using a modified JBI
CAPI that recognizes when hardware is available and uses hardware to perform XPATH
processing and hardware subscription/publication handling. In this case,
publication/subscription messages route directly through the XPE-2000 not to the JBI
framework. The off-loading of these CPU and time intensive tasks should free the core
framework for other important operations. Note that the changes to the CAPI only replaced the
critical function calls to publish/subscribe, all other CAPI operations occur as before.

In both the software and hardware case, the core JBI framework internally handles the query and
archive operations.

3

4 Setup
Testbed setup followed the included JBI documents. All systems were configured as JBI clients
so had the client install loaded. The JBI server system had the database and JBI framework
configured/setup according to the JBI installation documents. Database scripts were executed to
setup the database correctly. The Java SDK was installed on all systems to facilitate
compiling/installing of updated CAPI files on client systems. Lastly, a network share was setup
to distribute updated source files to all target systems.

4.1 Database
Database setup in the lab environment was according to the JBI installation guides. Although the
JBI supported both Oracle and MySQL, the experiment was run with only Oracle 9.2.0.1.
Database setup scripts were run directly from the included JBI source CD.

4.2 Java SDK
The Java Software Development Kit (SDK) was installed on each system. The version chosen
was 1.4.2 and the SDK was used to compile updated CAPI files and client load testing code.
Standard Ant build scripts were executed to build the capi-jms library file.

4.3 Network
Network setup was based on client workstation availability/capability and desk space. As such,
the network consisted of seven computers as shown in Figure 1, six of which had 1Gbps Ethernet
cards, one having only a 100Mbps Ethernet card. The computer (Arnold) with the 100Mbps
Ethernet card was also the slowest system – this was intentional so that a “slow” subscriber or
“slow” publisher could be introduced into the JBI test environment. The “slow” computer would
then throttle both solutions as each solution had to wait on the “slow” system before moving on
to the next published object.

4

Unity/
Internet

Alteon 180

1Gbps

1Gbps

Sarvega XPE-2000
XML Router

Alteon 180

Longstreet
WinXP
100.245

Herkimer
WinXP
100.242

Marion
WinXP
100.43

Arnold
WinNT4
100.239

Wayne
WinXP
100.241

Greene
WinXP
100.X

Hood
WinXP
100.241
JBI Framework
Oracle1Gbps

100Mbps

Figure 1 - Lab Network Configuration

4.4 System Hardware Configuration
The hardware configuration of each system is listed in Table 1.

System Processor Speed Memory Ethernet Operating System
Longstreet Pentium IV 2.53Ghz 512MB 1GBps Windows XP SP1
Herkimer Pentium IV 2.53Ghz 512MB 1GBps Windows XP SP1
Marion Pentium IV 2.53Ghz 512MB 1GBps Windows XP SP1

Arnold (*) Pentium III 500Mhz 256MB 100Mbps
Windows NT 4.0
SP6

Hood (**) Pentium IV 2.0 Ghz 512MB 1GBps Windows XP SP1
Wayne Pentium IV 2.0 Ghz 512MB 1GBps Windows XP SP1
Greene Pentium IV 2.0 Ghz 512MB 1GBps Windows XP SP1
(*) Arnold was used to introduce a “slow” system in to the experiment
(**) Hood is the JBI Framework Server and Oracle Database Server

Table 1- System Configuration

4.5 Configuration File
A configuration file is required on all clients that will be using a hardware-based
implementation. The configuration file consists of four required parameters and one optional
parameter. The required parameters are “server”, “port”, “adminport”, and “mode” where server
is the IP address of the Sarvega hardware, port is for sending publication requests, adminport is
for sending subscription requests, and mode determines if an acknowledgement is necessary.
The optional parameter hardwareoverride if specified to “true” will cause the CAPI to behave as

5

if hardware is not present. To increase readability of the file, comments and blank space may be
included. A hash symbol (“#”) precedes comment lines and blank lines are not processed.

4.5.1 Sample configuration file
In order for the client to locate the Sarvega XPE a configuration file is located on each client.
This configuration file identifies the IP address/ports of the XPE hardware and some additional
configuration options. Figure 2 presents a sample configuration file for the client.

#Config file for the sarvega xpe

#ip address of the server
server=155.244.100.4

#port that is used for sending publication request
port=55555

#port that is used for sending subscription message
adminport=80

#whether to ignore hardware even if hardware is present
hardwareoverride=false

#set the sync mode for transactions (publish)
mode = async

Figure 2 - Sample Client XPE Configuration File

4.5.2 server
Set server to point to the Sarvega XPE’s IP address. At this time, there is no way to discover the
Sarvega box remotely (e.g. like DHCP or a broadcast).

4.5.3 port
The port field is used by the publication request to send published objects to the Sarvega XPE.
The listener on this port ingests the published object and compares it to the subscription entries.
If a match occurs, the object is duplicated and distributed. If no match is found, the Sarvega
XPE returns a 404 to the publisher and discards the object.

6

4.5.4 adminport
The adminport field is used by the subscription operation to register a subscription request with
the Sarvega XPE. The listener on this port ingests the subscription request and sets up the
internal state machine of the XPE based on the subscribers XPATH. As objects are published,
the state machine determines when a match is present and then the subscriber receives the
published object.

4.5.5 hardwareoverride
A simple Boolean hardwareoverride flag determines if the client CAPI should use the XPE
hardware or traditional software JBI methods.
 true: Use the XPE hardware for publication/subscription requests
 false: Use the software JBI for publication/subscription requests

4.5.6 mode
The mode flag determines how hardware handles publication events. Settings for this flag are
“sync” or “async”. Table 2 illustrates the async/sync hardware setting and the software sync
setting. By comparing the three settings, it is possible to quantify the impact of the async/sync
hardware setting.

Method
Objects
Received

Approximate
Time (ms)

Approximate
Loss

HW/Async 34477 125000 0.56%
HW/Sync 34672 188000 0.00%
SW/Sync 34675 442000 0.00%

Table 2 - Sync/Async Comparison

 sync behaves similar to TCP/IP in that you have guaranteed delivery. The XPE will not
move past the current publishing object until the XPE receives an acknowledgement from the
client. One caveat is if the acknowledgement does not arrive within approximately 20s, the
router drops the object.
 async: behaves similar to UDP in that it is a best effort delivery system. In this case, the
XPE sends objects to clients and does not attempt to determine if client received the object. The
benefit of using the ASYNC setting is an approximate 35% speed improvement at the cost of
about 0.5% dropped objects. The client still acknowledges delivery to the server for each object,
but the server does not actually track the acknowledgements to ensure that one has occurred.

5 Implementation Details
The core JBI source code was modified to seamlessly incorporate a hardware-based solution.
Source code changes were restricted to the Common API (CAPI) and did not modify the original
software capability, but instead augmented the original code with alternate execution paths that
recognize the hardware XML router. Execution paths are defined by successfully determining if

7

a hardware router is present, and if so, the alternate hardware execution paths are followed
through the CAPI. If a hardware device is not found or if the choice to use present hardware is
overridden, then the original CAPI execution paths are followed.

Note that in order to maintain as equal of comparison as possible, the hardware JBI executes
almost the whole software JBI code sequence for both publish and subscribe. This essentially
meant that wasted JMS messaging and RMI traffic was generated by the Hardware JBI that was
superfluous and wasted bandwidth and time (approximately 200 packets per publish/subscriber
operation). This methodology was chosen so that only the very last step in the publish/subscribe
operation would use hardware while all other steps would be executed as in the software JBI.
The removal of these extraneous operations would have led to an increase in hardware
processing speed, but would have made the comparison uneven. Time values gathered only
account for how quickly the actual publish/subscribe operation executes and do not take into
account the overhead of each particular implementation (software or hardware).

The following is a brief summary of source code changes; all files are located in
\CommonAPI\J2EE\jms\src\main\mil\af\rl\jbi\commonAPI\substrate directory.

5.1 Software Changes
Minimal changes were required to the JBI CAPI to incorporate the Sarvega XPE router. A brief
description of the new source files and modified files is below:

5.1.1 Base64.java
This source file is a freeware Base64 implementation used to encode the payload of binary
publication objects. Base64 encoding adds roughly 33% to the size of the object but provides a
text-only encoding of binary. The software JBI passes binary Java Objects via JMS. The
hardware JBI does not utilize JMS and incorporates the binary objects into an XML wrapper. In
order to utilize an XML wrapper, the Java object is Base64 encoded to a text based
representation of the binary data. Upon receipt, the object is Base64 decoded and converted
back into the generic Object type.

8

0

10000

20000

30000

40000

50000

60000

70000

80000

Payload size (KB)

Overhead from Base64 Encoding

Raw Bytes
Base64

Raw Bytes 1950 26874 53729

Base64 2638 37519 73794

2KB 25KB 50KB

Figure 3 - Base64 Encoding

The experiment utilized 2KB, 25KB and 50KB payload sizes that were sent via JMS for the
software JBI and encoded via Base64 for the hardware JBI. As can be seen from Figure 3, the
XPE version of the JBI suffered an additional overhead cost of approximately 33% because all
payloads were Base64 encoded.

5.1.2 Hardware.java
The main class file contains support for the hardware JBI implementation. Both
SubscriberSequence.java and PublisherSequence.java incorporate the Hardware base object. If
the hardware JBI is running, then the execution paths for both publishing and subscribing use
hardware. The basic implementation for subscribing and publishing is as follows:

A subscription event creates a subscription request that registers itself as listening for a particular
object. This causes two actions: the first action is the creation of a single listener on the client
PC that is shared between all subsequent subscription requests and registering the particular
callback with the listener so that objects are returned to the listener associated with the
subscription. The second action is a message informing the XPE what the XPATH is for this
particular subscription and associating the returned client ID from the XPE to the listening
callback. By defining a unique subscription ID, the same listener can handle multiple
subscription requests lessening computer resources and allowing site-specific firewall port
configuration.

A publication event generates a publish request that is sent to the XPE containing the object to be
published (metadata and payload). The metadata is compared to the subscription XPATH
information internally on the XPE, and as matches are made, the object is copied and sent with
the matching listener associated with a client ID. The client PC receives the published object,

9

checks for a matching client ID and listener callback, and if found, returns the object to the
subscribing function. Figure 4 shows a functional representation of the complete
subscription/publication process.

Client

Server

{Subscribe - XPATH}

Client

{Publish - Metadata/Payload}

{Publish Subscription Match}

{Acknowledgement}

{Acknowledgement}

Figure 4 - Sub/Pub Sequence

5.1.3 Listener.java
In order to support connections expeditiously, a separate listener class was created and a single
listener is implemented. After the listener is created on a specific port, all subsequent
subscription requests are inserted into an array (for speed) containing the associated client ID
from the XPE, the object token assigned by the JBI framework, and the callback. To facilitate
cleaning up after a crashed or exited client, the XPE “pings” the listening port by opening and
immediately closing a connection after approximately 30 seconds of inactivity. If the XPE
realizes the port has closed, then the ports subscription entries are cleared. An “unsubscribe” is
still the cleanest way to severe the connection, but the hardware JBI can recover gracefully
without a formal unsubscribe.

A single shared listener is implemented using a Singleton class. A Singleton class employs
synchronization objects to ensure that one and only one object is instantiated. Once a single
object is made, all subsequent calls receive the pointer to the object.

The shared listener is implemented as a multithreaded listener. As each connection is accepted, a
worker thread is created to handle the connection. The full object is ingested and parsed to
separate metadata and payload. The Base64 encoded payload is converted back to a serializable
Java Object and the correct callback is found and executed for the listening client ID.

5.1.4 SubscriberSequence.java
The SubscriberSequence was modified in the constructor to create the hardware object. The
following functions were changed to add support for hardware via an initial check to see if the
hardware object is present.

10

5.1.4.1 setSequenceCallback
setSequenceCallback starts the listener and associates the callback message.

5.1.4.2 activateSequence
ActivateSequence sends the subscribe request to the hardware and sets up callback information.

5.1.5 PublisherSequence.java
The PublisherSequence was modified to support the hardware object. The following function
was changed to add support for hardware by attempting to create the hardware object

5.1.5.1 publishInfoObject
publishInfoObject publishes the object by sending the object to the hardware.

5.2 Message Representation:
A single root tag must wrap around the published object in order for the hardware JBI to
delineate the scope and boundaries of the object. Referencing Figure 5, this leads to the
following format for objects that are routing through the hardware JBI:

<root>
 <metadata>

metadata
</metadata>

 <payload>
 Base64 encoded payload
 </payload>
</root>

Figure 5 - Message Object Representation

The <root> and </root> tag are quietly ignored on the hardware and are only present to bracket
the <metadata> and <payload>. The hardware JBI makes routing decisions based upon tags
contained in the metadata section. The hardware JBI can be tuned to ignore the payload,
compress the payload, sign the payload, etc., but presently the payload is just ingested and
stored.

11

5.2.1 Subscribe Request
The subscription phase makes an HTTP connection to the subscribe daemon on the XPE with the
actual subscription contained in the POST portion of the HTTP message.
URL:

http://address:adminPort/cgi-bin/subscribe.cgi
POST data:
 xpath=[url encoded]predicate
 topic=object type
 port=listening port
 version=object type version
 ip=client IP address

If the XPE accepted the subscription request with no errors, it returns an HTTP response code of
200 and a unique client ID.

The POST method allows for essentially an unlimited amount of data to be POSTed. The GET
method is also available, but the HTTP specification limits data available for subscriptions to
4096 bytes.

Figure 6 shows an example XPATH expression with embedded Boolean operations in the
XPATH. Operations on numeric values did not require single ticks, whereas operations on string
values required single ticks to process correctly.

(
(<metadata><BasicTemporal><beginning_date_time_group><day>>=26) and
(<metadata><BasicTemporal><beginning_date_time_group><hour_time>>=13) and
(<metadata><BasicTemporal><beginning_date_time_group><minute_time>>=28) and
(<metadata><BasicTemporal><beginning_date_time_group><month_name='September') and
(<metadata><BasicTemporal><beginning_date_time_group><year>>=2003) and
(<metadata><BasicTemporal><ending_date_time_group><day><=26) and
(<metadata><BasicTemporal><ending_date_time_group><hour_time><=4) and
(<metadata><BasicTemporal><ending_date_time_group><minute_time><=0) and
(<metadata><BasicTemporal><ending_date_time_group><year><=2003)
)

Figure 6 - Logical XPATH Expression Example

5.2.2 Publish Request
The publication phase creates an HTTP connection to the publication daemon on the XPE with
the payload contained in the POST portion of the HTTP message.
URL:
 http://this.address:port/index.html
Content-type:
 application/xml
POST data:

12

 The metadata and payload of the object are sent. If there is no corresponding
subscription for the publication request, the XPE returns a HTTP response code of 404 and drops
the object.

5.3 Schemas
Figure 7 shows schemas and metadata installed on the JBI platform for this experiment. Note
that the payload on each of object is textual, although the actual payload was handled as a
generic “object” class so could have been any valid Java Object data type.

Schema Metadata
mil.af.rl.jbi.training.ato.xsd mil.af.rl.jbi.training.ato.xml
mil.af.rl.jbi.training.basic.xsd mil.af.rl.jbi.training.basic.xml
mil.af.rl.jbi.training.xmlxpath.xsd mil.af.rl.jbi.training.xmlxpath.xml

Figure 7 - Schema and Metadata Types

Figure 8-Figure 10 show a pictorial representation of the schemas used for this experiment.
Circled fields are randomized for publish/subscribe operations. The methodology shown in
Section 6 contains further information on how schema fields were randomized and assigned
experimental values.

Figure 8 - jbi.rl.af.mil.ato Object Fields

13

Figure 9 - jbi.rl.af.mil.basic Object Fields

Figure 10 - jbi.rl.af.mil.xmlxpath Object Fields

14

6 Methodology
In order to isolate the speed of each solution, a linear programming model was employed on the
publication program. This linear approach required the publisher to finish publishing an object
and receive an acknowledgement before publishing the next object. Once the publisher had
published all required objects it had completed its task. Timestamps were gathered from
subscribers to determine how long it took each subscriber to consume all published objects.
Speed comparisons can be made between software and hardware JBI instantiations to quantify
the differences in implementation and execution speed.

To minimize the client output status messages impact, the subscription output windows were
minimized to the system tray. Windows would still output the status messages showing the
timestamp and total receipt counter, but did not have to draw that information to the display,
which would have consumed resources. The publisher program(s) were then started and used to
monitor the state of the experiment – once the publisher completed execution then the client
program windows were maximized and timing data recorded for the run.

The software JBI experiments used unmodified configuration defaults. The hardware JBI had a
large number of configurable parameters, but I chose to use the default parameters as configured
by Sarvega. The one exception on the hardware JBI implementation dealt with the
maximum_connections value – this value played a role in asynchronous runs as it limits the
maximum number of concurrent connections. In asynchronous mode, it was possible that the
router would make too many concurrent connections to a given client PC and exceed the
maximum listening connection backlog on the client PC (a Windows sockets limitation).
maximum_connections played no role in the synchronous testing that was performed for this
experiment.

There are four loading levels to each experiment, consisting of a base subscription loading level
of 250, 500, 1000, and 2000 subscribers. Depending on experimental loading, the base loading
value was multiplied by a scalar value to create the required subscription/publication load. An
iteration of an experiment consisted of executing a particular loading level three times and
averaging the results.

The order of iteration execution changed on subsequent runs to mix up the tree building on the
server; for example, the first iteration would be subscriber 1, subscriber 2, then subscriber 3 – the
second iteration would be subscriber 2, subscriber 3, then subscriber 1. All commands were
entered then started consecutively as quickly as the <enter> key could be pressed on the client
machines. Once all commands were <enter>ed, the output windows provided status information
indicating subscription loading progress. The results ignore the subscription times in the timing
calculations as the intent of this JBI experiment was to document how quickly information
dissemination occurs, and subscription times only setup the system to perform the dissemination.

Once the subscribed entries had “stabilized” (applicable to hardware), then each publisher was
opened on the requisite computers and the publish command was entered. Once all commands

15

were keyed in, then they were also started in the same fashion as the subscription entries (e.g. as
fast as the <enter> key could be depressed). Publish windows were not minimized so I could
determine when the publish action completed. Once all publishes operations were complete –
the subscriber windows were checked for the final object count/timestamp.

The subscriber consumed objects by reading in both the metadata and payload. After consuming
the object, the callback simply incremented the object count variable and diplayed the
timestamp. Timestamp initialization occurred upon the first receipt of an object and was not
reset until the subscriber process exited.

To further complicate the XPATH generation for subscribers and generate unique published
output, certain fields had random parameters generated. The random values assigned to each run
came from a seed value to allow for replication of behavior. These seed values were
incorporated into the publish/subscribe applications to build the expected metadata. Figure 11
below, shows that for each object there is a corresponding XPATH generated with a random data
type based on a probability. A uniform distribution determined the probability of a field being
present in an XPATH expression or included in the published object. Figure 12 shows the
random values generated as the data items for a given XPATH expression. A random uniform
distribution determined the values assigned to a given XPATH expression. The basic structure
of the XPATH and published objects was similar, but the actual data contained therein was
randomly distributed over a wide range of possible values increasing the amount of work
necessary for the server to determine if a match is present. Seed values for publishers and
subscribers were always different so all matches came from the Boolean operations in the
XPATH being satisfied.

Object XPath Op Type Probability
ato /metadata/ATO/nickname = String 80%
 /metadata/ATO/serialno = String 80%
 /metadata/ATO/originator = String 40%
 /metadata/TemporalATO/day >= Integer 30%
 /metadata/TemporalATO/hour_time >= Integer 80%
 /metadata/TemporalATO/minute_time >= Integer 60%
 /metadata/TemporalATO/month_name = String 70%
 /metadata/TemporalATO/year >= Integer 80%
basic /metadata/BasicTemporal/beginning_date_time_group/day >= Integer 30%
 /metadata/BasicTemporal/beginning_date_time_group/hour_time >= Integer 80%
 /metadata/BasicTemporal/beginning_date_time_group/minute_time >= Integer 60%
 /metadata/BasicTemporal/beginning_date_time_group/month_name = String 70%
 /metadata/BasicTemporal/beginning_date_time_group/year >= Integer 80%
 /metadata/BasicTemporal/ending_date_time_group/day <= Integer 40%
 /metadata/BasicTemporal/ending_date_time_group/hour_time <= Integer 80%
 /metadata/BasicTemporal/ending_date_time_group/minute_time <= Integer 60%
 /metadata/BasicTemporal/ending_date_time_group/month_name = String 70%

16

 /metadata/BasicTemporal/ending_date_time_group/year <= Integer 80%
xmlxpath /metadata/Orig/type = String 80%
 /metadata/Orig/nickname = String 80%
 /metadata/Orig/serialno = String 70%
 /metadata/Orig/originator = String 80%
 /metadata/Orig/version >= Integer 40%

Figure 11 - Randomization Values for Fields

XPath object Number Values
month_name 12 January, February, March, April, May, June,

July, August, September, October, November, December
nickname 10 KTJR, KMYX, KQAZ, KWXS, KDEC

KFRV, KTBG, KNHY, KUJM, KIKL
originator 10 AFRL, AFMC, ACC, AFSOC, AFCA,

AFC2ISR, AFSPC, AFWIC, NSA, CIA
type 5 Targets, Protected, Critical, Friendly, Moving
nick 5 targ, prot, crit, frnd, move
alphabet 26 A, B, C, … , Y, Z
ATO/serialno 50,000 nick(1)+random(9999)
Orig/serialno 260,000 “JBI”+random(9999)+alphabet(1)

Figure 12 - Randomized Key Words for Fields

7 Results and Discussion
The experimental data is presented in six groupings. In all cases, the experiment was executed
three times and the data recorded for each loading level (250, 500, 1000, and 2000). The data
was averaged across all three experiments to determine the final data value. The focus of the
experiment was on publishing speed – or how quickly the JBI hardware/software server could
distribute the information to the subscribers. I performed two hundred and four total
experiments and recorded data in Excel for ease of calculation/analysis. The subscription setup
speed was not tracked, although the software subscription speed was much faster than the
hardware subscription speed – which is directly related to the fact that the hardware is a rough
prototype and minimal changes were made to a commercial product to support our
experimentation.

The data are presented under each experimental type, further subdivided by software, hardware,
and an analysis section. The format of the presented data is a graphical representation of the
tabulated data elements. Where applicable, the title of the chart defines how many fast and slow
publishers and subscribers are present, for example: “Operation [Fast/Slow] : Pub [4/0], Sub
[0/1]” – means that there were four fast publishers, no slow publishers and zero fast subscribers,
with one slow subscriber.

In all cases, two common data elements illustrate the loading level of the experiments. The first,
“Objects Published,” indicates the number of objects created by the publishing application and

17

delivered into the JBI system. The second, “Objects Delivered,” indicates the amount of
additional work that had to occur inside the JBI system to deliver the published objects to the
requesting subscriber. This value shows the amount of replication that occured – for example, if
a publisher published 2000 objects causing 69237 object deliveries, then on average each
published object was replicated 35 times and fulfilled multiple subscription entries. The level of
effort on the JBI system correlates to how many replications occur, how many unique
communication end-points are present, and how many fulfilled subscription entries are satisfied
(based on a complete XPATH evaluation of all loaded subscribers). Therefore, especially at the
higher loading levels (x1000 and x2000), the number of replications has a pronounced affect on
the speed of the JBI system, but also gives a more accurate indicator of how a fielded JBI system
would behave. Replications and complex XPATH expression evaluation will be an operational
constant and efficient handling of these operations will increase the JBI system throughput
substantially.

Trend lines illustrate the current behavior of the system and the expected behavior of the system
beyond the data points gathered. The regression trend lines chosen had the highest R2 values and
most accurately followed the data that was gathered. In many instances, differing trend line
types are present on the same graph – this was in an effort to match the data most accurately and
oftentimes the differences in data did not facilitate choosing the same type of trend line. The
trend line extensions beyond the data gathered are not necessarily accurate and would require
further testing to validate, but do give a quick visual “what-if” look at possible “future” data
points/behavior.

7.1 Fast/Slow Subscription Case
The fast and slow subscription case quantifies the behavior of both the hardware and software
JBI when a possible slow subscriber is present. Realistically, not all subscribers to a given object
will process the object as quickly and this experiment compares the performance difference
between the two scenarios. The expected result of a “slow” subscriber should be a decrease in
aggregate publishing fulfillment speed, as the server must consume additional time to fulfill the
slower subscription endpoint delaying follow-on subscription fulfillments.

Fast Subscriber Slow Subscriber

Publisher Publisher

Fast Subscriber
Figure 13 – Slow/Fast Subscriber Network Setup

Figure 13 above shows the basic configuration of the system for the slow subscriber/fast
subscriber experiment. All other client systems stayed the same with the exception of the one
system swapped out to provide the necessary fast/slow operation. Figure 14 below is divided
into two sections for comparison of the fast/slow (a) and fast/fast (b) cases for both hardware and

18

software, the (c) chart shows the combined data points. Figure 14 (c) is a combination of an
overlay of (a) and (b) for easy comparison between hardware and software JBIs.

19

Operation [Fast/Slow] : Pub [1/0], Sub [2/1]

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

250 500 1000 2000

Objects/[Publish/Subscribe]

Ti
m

e
(m

s)

0

10000

20000

30000

40000

50000

60000

70000

80000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered Hardware Software
(a)

 Operation [Fast/Slow] : Pub [1/0], Sub [3/0]

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

250 500 1000 2000

Objects/[Publish/Subscribe]

Ti
m

e
(m

s)

0

10000

20000

30000

40000

50000

60000

70000

80000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered Hardware Software
(b)

 250 500 1000 2000
Objects
Published 250 500 1000 2000
Objects
Delivered 1312 4740 17520 69327

Hardware 13297.44 30404.22 83465.56 287755

Software 18266 57782.11 210887 977102

(a)

 250 500 1000 2000
Objects
Published 250 500 1000 2000
Objects
Delivered 1312 4740 17520 69327

Hardware 9972.222 23383.89 63283 269248.4

Software 16670.11 52595.56 189274.3 945826.9

(b)
Combined Hardware/Software Slow/Fast Subscriber

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

250 500 1000 2000
Objects [Subscribed/Published]

Ti
m

e
(m

s)

0

10000

20000

30000

40000

50000

60000

70000

80000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered
Hardware - Slow Hardware - Fast
Software - Slow Software - Fast

(c)
Figure 14 - (a) Slow Subscriber Data, (b) Fast Subscriber Data, (c) Combined

Impact of
“Slow”
subscriber 250 500 1000 2000
Hardware 33.3% 30.0% 31.9% 6.9%
Software 9.6% 9.9% 11.4% 3.3%

Table 3 - Impact of "Slow" Subscriber

7.1.1 Software JBI
The software JBI results differed slightly when a “slow” subscriber was present as compared to
all fast subscribers. Both Figure 14 (a) and (b) above, show similar response times between the
two cases. Figure 14 (c) illustrates that in general, the software JBI performed much slower

20

than the hardware JBI as the load increased, and at a loading level of 2000 was approximately 3x
slower.

The impact as shown in Table 3 of the slow subscriber is approximately 10% for the 250, 500,
and 1000 loading level. The impact decreases to only 3% for the 2000 loading level – this
smaller impact is due to the larger server load offsetting the fact that there is a slow subscriber
present. In general, the slow subscriber causes the software JBI to perform approximately 10%
worse, which is a relatively minor impact. Examining Figure 14 (c) further supports this
conclusion as the two software curves are close together.

7.1.2 Hardware JBI
As was the case for the software JBI, the hardware JBI exhibited similar behavior when a “slow”
subscriber was present to all fast subscribers. Figure 14 (a) and (b) above show a similar
response between both cases. Figure 14 (c) illustrates that the hardware JBI outperforms the
software JBI by about a factor of 3x at the 2000 loading level.

The impact chart shown in Table 3 actually highlights that the hardware is more susceptible to a
slow subscriber. There is slightly over 30% impact for the 250, 500, and 1000 loading levels
when a slow subscriber is present. As was shown in the software JBI case, the 7% impact at the
2000 level is smaller due to the increased load on the system offsetting the slower subscriber
speed. In general, the slow subscriber impacts the hardware JBI at a cost of approximately 30%
and is most noticeable at lower loading levels – although the hardware JBI still outperforms the
software JBI considerably regardless of the greater impact of a slow subscriber.

7.1.3 Analysis
The results for this scenario were surprising in both the software and hardware case. As shown
in Figure 15, the impact of a slow subscriber was relatively minor, adding 18.5s (6.8%) to the
2000 subscriber run for hardware and 31.2s (3.3%) to the 2000 subscriber run for software.
Interestingly, the software JBI more efficiently handles slow subscribers as shown by the 250
and 500 run, where the impact of the slow subscriber is less than the impact for the hardware
JBI. The software JBI performs slightly slower than the hardware JBI on the 1000 run. The
2000 run shows that the software JBI took just over 31s to handle the data, but this was on a total
run time of approximately 960s (approximately 3%). The hardware JBI’s handling of the 2000
run shows it outperforms the 1000 run – this is likely due to one of the HW/fast runs taking an
inexplicable extra 16,000ms to execute, inflating the average by approximately 6,000ms. With
the increased loading of the 2000 run, the impact of a slower subscriber decreased due to the
increased packet replication and extra routing.

21

Performance Difference "Slow" Subscriber

-35000.0

-30000.0

-25000.0

-20000.0

-15000.0

-10000.0

-5000.0

0.0

Objects

Ti
m

e
(m

s)

Hardw are -3325.2 -7020.3 -20182.6 -18506.6

Softw are -1595.9 -5186.6 -21612.7 -31275.1

250 500 1000 2000

Figure 15 - Performance Difference of "Slow" Subscriber

Fitting a curve to both hardware and software JBI results provides insight into behavior beyond
the tested 2000 subscribing nodes. According to the software and hardware analysis shown in
Figure 14 (c) and the curve fitting shown in Figure 16 (below), the data tracks very closely for
both the hardware and software cases in comparison of the impact of a fast/slow subscriber.
Observing the behavior of both hardware and software curves shows that as the number of
subscriber nodes increases, grouping of the slow and fast data points converges.

22

Fast/Slow Number of Subscribers/Payload Size Trend

y = 3E-06x2 - 0.0095x + 9.4161
R2 = 0.944

y = 4E-06x2 - 0.0121x + 12.374
R2 = 0.9376

y = 3E-06x2 - 0.0065x + 13.911
R2 = 0.9593

y = 3E-06x2 - 0.0059x + 14.945
R2 = 0.8944

0

2
4

6
8

10
12

14
16

0 500 1000 1500 2000 2500

Number of Subscribers

Pr
oc

es
si

ng
 T

im
e

(m
s/

ob
je

ct
)

Hardware-Fast Hardware-Slow Software-Fast Software-Slow

Poly. (Hardware-Fast) Poly. (Hardware-Slow) Poly. (Software-Fast) Poly. (Software-Slow)

Fast

Fast

Figure 16 - Fast/Slow Subscriber Trend

The delivered Objects/Second speed shown in Figure 17 highlights that hardware provides a
much higher throughput than software. Hardware – Fast and Hardware – Slow are within the
increasing range of 98.7obj/s and 276.9obj/s whereas Software – Fast and Software – Slow are
within a steadier range of 71.0obj/s and 92.6obj/s. The experiments best performance is at the
1000 publishing level where three out of the four experiments have their highest object/second
processing speed.

23

Delivered Objects/Second

0

50

100

150

200

250

300

250 500 1000 2000

Objects Published

O
bj

ec
ts

/s
ec

on
d

Hardware - Fast Software - Fast Hardware - Slow Software - Slow

 250 500 1000 2000
Objects
Published 250 500 1000 2000
Objects Delivered 1312 4740 17520 69327
Hardware - Fast 131.5655 202.7037 276.8516 257.4834
Software - Fast 78.70373 90.12168 92.56406 73.29777
Hardware - Slow 98.66557 155.8994 209.9069 240.9237
Software - Slow 71.82744 82.03231 83.07767 70.95165

Figure 17 - Delivered Objects/Second

Furthermore, the hardware JBI data shows that as the number of subscribers increases,
processing time per object decreases – or that the hardware JBI is more efficient with heavier
loading where subscriber overlap is higher (e.g. object replication increases as a single published
object fulfills multiple subscriptions). The software JBI has an initial decrease in processing
time per object as the number of subscribers trends toward 1000 subscribers as it is able to
efficiently handle the offered load. After the 1000 subscriber point, the software JBI trends
upward indicating that a higher number of subscribers is causing subscriber overlap to be higher
and the software JBI is paying a greater price to handle object replication.

24

7.2 Steady Increase in Subscribers Case
This experiment tested the hardware and software JBI’s ability to handle a steadily increasing
subscriber load. The first run had one publisher and two subscribers, the second run had one
publisher and three subscribers, and the last run had one publisher and four subscribers. The
number of subscribed/published objects was constant (factor * 1000) and was tested at factors 2,
3, and 4 (2x1000, 3x1000, and 4x1000). The expected increase in processing speed would be at
worst linear indicating that increased load was handled in a similar fashion to lighter loading
levels. A non-linear increase in processing time indicates that a particular JBI is getting
“behind” in its processing and not processing load increases as efficiently as was possible with a
smaller load.

Publisher Publisher Publisher

Subscribers Subscribers Subscribers
Figure 18 - Steady Subscriber Increase Network Setup

As is shown in Figure 19, the objects published increases by 50% and 33% across the
experimental range – this is mirrored by the 49% and 34% of objects delivered across the same
range. Therefore, the two sets of experiments will determine if a similar behavior is evident for
either software or hardware JBI.

25

Operation [Fast/Slow] : Pub [1/0], Sub [2,3,4/0]

0

50000

100000

150000

200000

250000

300000

2 Subx1000 3 Subx1000 4 Subx1000

Objects/[Publish/Subscribe]

Ti
m

e
(m

s)

0

5000

10000

15000

20000

25000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered Hardware Software

 2x1000 3x1000 2x->3x 4x1000 3x->4x
Objects
Published 2000 3000 50.0% 4000 33.3%
Objects
Delivered 11788 17520 48.6% 23487 34.1%
Hardware 52307.5 63283 21.0% 72858.08 15.1%
Software 131377.2 189274.3 44.1% 268981.6 42.1%

Figure 19 - Steady Subscriber Increase Data

7.2.1 Software JBI
Figure 19 illustrates that the software JBI experiences a much steeper increase in processing time
than the hardware JBI. The software JBI is showing signs of heading toward a saturation
condition as the increase in subscriber load caused a greater than expected increase in processing
time. As the “objects delivered” load increases 49% and 34% (11788 to 17520, and 17520 to
23487) processing time increases 44% and 42% respectively. The increased load of the 4x1000
run suffers a greater performance impact than the 3x1000 run based on the increased load. In
this case, software JBI performance is degrading with increased subscriber load, as a 49%
increase in load causes a 44% increase in time (slightly better than the expected 49%), and a 34%
increase in load causes a 42% increase in processing time (expected processing time increase
would have been only 34%).

26

7.2.2 Hardware JBI
Figure 19 shows the linear impact of the hardware JBI with increased subscriber load. This
increased processing time tracks closely with the increase in subscriber load. The “objects
delivered” load increase of 49% and 34% (11788 to 17520, and 17520 to 23487) exhibits only a
21% and 15% increase in processing time. Unlike the software JBI case, the hardware JBI
exhibits a better than expected decrease in load behavior: a 49% increase in load causes a 21%
increase in processing time (the expected value was 49%), and the 34% increase in load causes a
15% increase in processing time (the expected value was 34%).

7.2.3 Analysis
The software JBI non-linear increase highlights potential scalability concerns – as an increase in
loading leading to a saturation condition is not ideal. The hardware JBI is more successful in
handling the increased load and exhibits a decrease in processing time across the experiment. By
examining the trend line shown in Figure 20, the trend for software is increasing as the
subscribing load increases, whereas the trend for hardware is decreasing under increased
subscribing load. The hardware downward trend relates to efficiencies gained through packet
replication in this experimental setup, as packet replication is less costly in terms of processing
time in the hardware scenario.

Hardware/Software Steady Increase Trend

y = 224.13x-0.5159

R2 = 0.9999

y = 5E-07x2 - 0.0028x + 14.8
R2 = 1

0

2

4

6

8

10

12

14

1000 2000 3000 4000 5000

Number of Subscribers

Pr
oc

es
si

ng
 T

im
e

(m
s/

ob
je

ct
)

Hardware Software
Power (Hardware) Poly. (Software)

Figure 20 - Steady Increase Trend

Furthermore, hardware JBI data shows that as the number of subscribers increases, processing
time per object decreases – or that the hardware JBI is more efficient with heavier loading where
subscriber overlap is higher (e.g. object replication increases as a single published object fulfills
multiple subscriptions). This data is further supported by Figure 21 which shows that as
processing time per object decreases, the number of objects handled per second increases from
225.4obj/s to 322.4obj/s. The software JBI has a relatively steady processing time per object that
is trending higher and is further illustrated by Figure 21 showing that as the processing time per

27

object fluctuates, the objects/second processing goes from 89.7obj/s to 92.6obj/s and back down
to 87.3obj/s.

Delivered Objects/Second

0

50

100

150

200

250

300

350

2x1000 3x1000 4x1000

Objects Published

O
bj

ec
ts

/s
ec

on
d

Hardware Software

 2x1000 3x1000 4x1000
Objects Published 2000 3000 4000
Objects Delivered 11788 17520 23487
Hardware 225.3597 276.8516 322.3664
Software 89.7264 92.56406 87.31825

Figure 21 - Delivered Objects/Second

7.3 Payload Increase Case
The payload increase experiment determined how much additional processing time was
necessary as payload size increased. The experiment ranged over three values, base payload
value of approximately 2KB, a medium value of approximately 25KB, and maximum value of
approximately 50KB. Payload size is representative of what could be present in a true JBI
scenario – a small text message (2KB), a small image or larger text document (25KB), and a
couple of small images or one larger image (50KB). Realistically, while multi-megabyte objects
may be possible in some scenarios, for the purposes of this experiment object sizes greater than
50KB are ignored.

Publisher
{2KB, 25KB, 50KB}

Subscribers
Figure 22 - Payload Increase Network Setup

28

As is shown by the network diagram of Figure 22, a single publisher sent three payload sizes to
each of three subscribers. The scenario published all of one payload size for each experiment –
no mixing of sizes occurred inside an experimental iteration. The expectation was that increased
payload size would cause minimal impact to the object delivery time and that routing/delivery
would be independent of object sizes.

Operation [Fast/Slow] : Pub [1/0], Sub [3/0]
Payload Size [2K, 25K, 50K]

Software

0

1000000

2000000

3000000

4000000

5000000

6000000

250 500 1000 2000

Objects/[Subscribe/Publish]

Ti
m

e
(m

s)

0

10000

20000

30000

40000

50000

60000

70000

80000

O
bj

ec
ts

De

liv
er

ed

Objects Published Objects Delivered
Software - 2K Software - 25K
Software - 50K

(a)

Operation [Fast/Slow] : Pub [1/0], Sub [3/0]

Payload Size [2K, 25K, 50K]
Hardware

0

1000000

2000000

3000000

4000000

5000000

6000000

250 500 1000 2000

Objects/[Subscribe/Publish]

Ti
m

e
(m

s)

0

10000

20000

30000

40000

50000

60000

70000

80000

O
bj

ec
ts

De

liv
er

ed

Objects Published Objects Delivered
Hardware - 2K Hardware - 25K
Hardware - 50K

(b)

 250 500
250->500
xKB/2KB1 1000

500->1000
xKB/2KB1 2000

1000->2000
xKB/2KB1

Objects
Published 250 500 1000 2000
Objects
Delivered 1312 4740 17520 69327
Software -
2K 16670.11 52595.56 189274.3 945826.9
Software -
25K 53090.22 171333.3 229.1% 648593.9 249.2% 3221915 240.1%
Software -
50K 79895.78 271199.1 432.5% 1016010 444.9% 5394467 478.7%

 (a)

 250 500
250->500
xKB/2KB1 1000

500->1000
xKB/2KB1 2000

1000->2000
xKB/2KB1

Objects
Published 250 500 1000 2000
Objects
Delivered 1312 4740 17520 69327
Hardware -
2K 9972.222 23383.89 63283 269248.4
Hardware -
25K 78727.22 120918.4 214.6% 256126.8 238.9% 657121.7 94.7%
Hardware -
50K 92118 216154.7 824.8% 486322.9 577.1% 1262904 277.0%

 (b) .
Figure 23 - Payload Increase Data, (a) Software, (b) Hardware

1 Values are calculated as follows: 1

2232
)225325(
−

−
−

xKHardwarexKHardware
xKHardwarexKHardware or 1

22.9972289.23383
22.787274.120918

−
−
−

The numerator is the present object size delivery time and is the difference in delivery time at the two loading levels. The denominator is the
prior object size delivery time and is the difference in delivery time at the two loading levels. The fractional comparison of these two values and
subtracting one gives a percentage difference in time indicating how much longer the present object size required as compared to the prior object
size in terms of delivery time. Greater than 0 means it took comparatively longer, equal to 0 means it took the same amount of time, and less than
0 means it took comparatively less time to do the same action.

29

7.3.1 Software JBI
The software JBI is in general less capable of handling increased subscriber size. As is shown in
Figure 23(a), the base software JBI experiment with a 2KB payload performs slightly better than
the hardware JBI with a 50KB payload and 2000 subscribers. Furthermore, subsequent
experiments with a 25KB payload and a 50KB payload present a drastic degradation in
processing speed, most noticeable at the 1000 and 2000 subscription loading-levels.

Processing Time/Payload Size Trend

y = 9.0307x0.4793

R2 = 0.9977

y = 7.7483x0.4983

R2 = 0.9953

y = 7.4868x0.5128

R2 = 0.997

y = 1.3356x + 11.695
R2 = 0.9986

0
10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60

Payload Size (KB)

Pr
oc

es
si

ng
 T

im
e

(m
s/

ob
je

ct
)

Software 250 Software 500 Software 1000 Software 2000

Power (Software 250) Power (Software 500) Power (Software 1000) Linear (Software 2000)
Figure 24 - Payload Increase Trend

The software JBI trend lines present interesting observations on behavior. The first observation
is that the Software 2000 run is linear, while all other runs fit to a power regression curve. The
key difference between the four curves is size of the subscribing payload. The data indicate that
for 250, 500, and 1000 loading levels processing time is grouped based on payload size. Three
curves (250, 500, 1000) track closely and indicate that the software JBI system handles a given
object size similarly for a given subscription loading level. A 2KB object size at the 250-2000
loading level requires 12.1ms/object ± 1.2ms/object. Including the Software-2000 data in the
averages for the 25KB and 50KB payload size is meaningless due to the large variance
introduced. For a 25KB object size at the 250-1000 loading level the average processing time is
37.9ms/object ± 1.9ms/object. Lastly, the 50KB object size at the 250-1000 loading level
requires 58.7ms/object ± 1.6ms/object to process. The Software-2000 run shows where the
software JBI system is heading – and that is as subscribers and payload size increase processing
time increases. The Software-2000 curve tracks the other three curves closely until just after the
20KB object size, after which it increases much more rapidly and takes an additional processing
time of 20ms/object at the 50KB object size.

The 250, 500, and 1000 runs behave similarly and “cost” about the same amount to process – so
the JBI system can handle the 2KB-50KB range of data sizes with less than a 1000 subscribers in
about equal time. Only at the 2000 loading level does the number of subscribers and payload
size impact processing time.

In order to draw conclusions about the efficiency of processing larger payload sizes and
determine impact, a 2-axis comparison is performed. Referencing the data table in Figure 23(a)

30

and the chart in Figure 24, a percentage value is assigned to the processing time as the subscriber
load increases from 250->500, 500->1000, and 1000->2000 and the payload increases from
2KB->25KB and 2KB->50KB. This ratio is graphed in Figure 25 (below)– the floor of the 3-D
chart is the base 2KB case, the bars indicate for the given payload size at a given loading level,
how much longer the system took to process the data as compared to the base case.

Results are as expected for the software JBI system – as the number of subscribers increase and
payload size increases, the system requires longer to process subscriptions. An increase from a
2KB payload to a 25KB payload causes about a 200% increase in processing time, noting that
the bars are all approximately level. The increase from the 2KB payload to a 50KB payload
causes around a 400% increase and shows a decidedly upward trend on the bars as the loading
level increases. The conclusion drawn from this data is that not only does the system perform
slower when payload size and number of subscribers increase; the trend is that each loading
increase impact is approximately double than the prior increase.

250->500
500->1000

1000->2000

Software 25KB/Software 2KB

Software 50KB/Software 2KB
0.0%

100.0%

200.0%

300.0%

400.0%

500.0%

Ratio of increased Subscriber Load/Processing Time from 2KB Base
Payload Size

Software 25KB/Software 2KB Software 50KB/Software 2KB

Figure 25 - Percent Increase over Base Object Size

7.3.2 Hardware JBI

The hardware JBI is in general much more capable of handling increased subscriber size. As is
shown in Figure 23(b), the base hardware JBI experiment outperforms the software JBI in all
instances with the exception that the hardware 50KB payload is slightly slower than software JBI
with a 2KB payload and 2000 subscribers. This is somewhat interesting from the fact that the
hardware object size is 25x larger than the software object size and hardware performs only
slightly slower; clearly the hardware JBI solution provides a great benefit in increasing
performance.

31

Processing Time/Payload Size Trend

y = 19.8Ln(x) - 5.699
R2 = 0.9971

y = 0.8466x + 3.6182
R2 = 0.999

y = 0.5034x + 2.4099
R2 = 0.9993

y = 0.2993x + 2.8433
R2 = 0.9897

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60

Payload Size (KB)
Pr

oc
es

si
ng

 T
im

e
(m

s/
ob

je
ct

)
Hardware 250 Hardware 500 Hardware 1000 Hardware 2000

Log. (Hardware 250) Linear (Hardware 500) Linear (Hardware 1000) Linear (Hardware 2000)

Figure 26 - Payload Increase Trend

Trend lines shown above in Figure 26 are interesting for the behavior illustrated. All regression
lines except for Hardware 250 were linear; the Hardware 250 case was logarithmic. As was the
case in the software analysis above, the key difference between the trends is object size, but in
this case, the smaller object size is behaving differently. The logarithmic nature of the curve is
explained as follows – at small loading levels (250 subscribers in this case), increased payload
size causes a dramatic increase as the object size goes from 2KB->25KB, and a much more
gradual impact as the object size goes from 25KB->50KB. In this case, the loading level is such
that there is minimal duplication of published packets (ratio is approximately 1:5 “objects
published:objects delivered”) so hardware pays a steeper cost for routing each object and this
cost is more costly as object size increases.

As subscription loading levels increase, duplicated packet ratio increases (1:9 @ 500, 1:18 @
1000, 1:34 @ 2000) and the curve clearly indicates that hardware performs better under these
increased loading scenarios. The linear trend lines show that increasing the subscribers to 500,
then 1000, and finally 2000 yields in improvement in object routing speed, as processing time
per object is decreasing. This is evidence that the hardware JBI is leveraging its ability to rapidly
replicate and route packets to fulfill large subscription requests from a single publication –
causing a decrease in processing time as loading/packet sizes increase.

As was stated in the prior section, in order to draw a conclusion about the efficiency of
processing larger payload sizes and determine the impact, a 2-axis comparison is performed.
Referencing the data table in Figure 23, a percentage value is assigned to processing time as
subscriber load increases from 250->500, 500->1000, and 1000->2000 and payload increases
from 2KB->25KB and 2KB->50KB. This ratio is graphed in Figure 27 – the floor of the 3-D
chart is the base 2KB case, the bars indicate for the given payload size at a given loading level,
how much longer the system took to process the data as compared to the base case.

In the hardware JBI experiment the results are surprising – the increase in the number of
subscribers and payload size actually leads to a dramatic decrease in processing time ratio, most
noticeably in comparing the Hardware 50KB/Hardware 2KB ratio. The results presented in the

32

Hardware 25KB/Hardware 2KB experiment have an unusual blip in that there is an increase at
the 500->1000 level but otherwise it shows a downward trend much like the Hardware
50KB/Hardware 2KB trend. Hardware 50KB/Hardware 2KB exhibits a clear downward drop in
processing time as the load increases due to increased subscribers and greater object size. The
conclusion drawn from the data is that as subscriber load increases - the amount of replications
also increases – and replications are handled efficiently by the hardware JBI. Increased
replication allowed the hardware to excel and increase the effective processing speed even
though object size was also increasing. Furthermore, greater object size coupled with increased
subscriber workload still allowed for improvements in processing time. In this case, results for
the hardware JBI are better than was expected.

250->500
500->1000

1000->2000

Hardware 25KB/Hardware 2KB

Hardware 50KB/Hardware 2KB
0.0%

200.0%

400.0%

600.0%

800.0%

1000.0%

Ratio of increased Subscriber Load/Processing
Time from 2KB Base Payload Size

Hardware 25KB/Hardware 2KB Hardware 50KB/Hardware 2KB

Figure 27 - Percent Increase over Base Object Size

7.3.3 Analysis
The delivered Objects/Second speed shown in Figure 28 highlights that hardware provides a
much higher throughput than software. There is a dramatic decrease in objects/second once the
payload size increases beyond 2KB for both the hardware and software instantiations. Hardware
with a 2KB payload ranges from 131.6obj/s to 257.5obj/s and hardware with a 50KB payload
ranges from 14.2obj/s to 54.9obj/s. In the case of software, a 2KB payload ranges from
78.7obj/s to 92.6obj/s, and software with a 50KB payload ranges from 16.4obj/s to 17.2obj/s.
The experiments best performance is at the 1000 publishing level for software where three out of
the three experiments have their highest object/second processing speed. In the case of
hardware, the 2KB case has its best performance at the 1000 level, but both the 25KB and 50KB
case perform best at the 2000 level.

33

Objects Delivered/Second

0

50

100

150

200

250

300

250 500 1000 2000

Objects Published

O
bj

ec
ts

/S
ec

on
d

Hardware - 2K Hardware - 25K Hardware - 50K Software - 2K Software - 25K Software - 50K

 250 500 1000 2000
Objects Published 250 500 1000 2000
Objects Delivered 1312 4740 17520 69327
Hardware - 2K 131.5655 202.7037 276.8516 257.4834
Hardware - 25K 16.66514 39.19998 68.40362 105.501
Hardware - 50K 14.2426 21.92874 36.02545 54.89489
Software - 2K 78.70373 90.12168 92.56406 73.29777
Software - 25K 24.71265 27.66537 27.01228 21.51733
Software - 50K 16.42139 17.47793 17.24392 12.8515

Figure 28 - Objects Delivered/Second

The impact on the software JBI due to increased object size is substantial. Experimental results
indicate that the software JBI suffers a 200% increase in time as object size increases from 2KB
to 25KB, and another 200% (400% from 2KB to 50KB) increase as object size increases from
25KB to 50KB. The explanation for this behavior is tied to the software foundation of the JBI –
each object must be ingested via the TCP/IP stack, processed AND duplicated at the application
layer, before traversing that stack again for transmission. The hardware JBI on the other hand,
processes and duplicates objects as an inline network router so it is not impacted by the TCP/IP
stack and can use rapid hardware routines for packet duplication. The more efficient hardware
implementation of the JBI shows a decrease in relative processing time as the number of objects
increases and a much smaller impact as the packet size increases from 2KB to 25KB (200%
decreasing to 100%) and 25KB to 50KB (800% decreasing to 275%). Hardware impact is quite
substantial as the number of subscribers’ increases from 250 to 500, and much less dramatic as
the subscribers increase from 1000 to 2000. The subscriber increase from 250 to 500 as object

34

size increases illustrates that overhead to handle packets outweighs benefits of being able to
rapidly distribute/duplicate an object. Whereas, as load increases from 1000 to 2000 with
increased object size, overhead associated with processing an object is much smaller than the
gain realized by being able to rapidly duplicate and transmit an object to a subscribing node.
Therefore, in the hardware JBI case as object size increases and subscriber load increases, impact
of the processing decreases as hardware efficiencies are realized, which is somewhat counter-
intuitive.

7.4 Steady Increase/Payload Increase Case
The following experiment expanded and combined the approach taken in 6.2 and 6.3 and
determined what happens in the case of payload increases and a steady increase in the number of
subscribers. The expected outcome is that increased payload size would cause a minimal impact
to object routing/delivery time. The expected increase in processing speed caused by increasing
the number of subscribers would be at worst linear indicating that increased load was handled
similarly to a prior lighter load. A non-linear increase indicates that particular JBI
implementation is getting “behind” in its processing and not processing load as efficiently as was
possible with a smaller load. Figure 29 shows the experimental configuration indicating various
loading levels. Figure 29 also shows that the number of subscribers was increased by a
consistent factor, ranging from 2,3 to 4 for a subscription loading level of 2x1000, 3x1000, and
4x1000 respectively.

Subscribers Subscribers Subscribers

Publisher
{2KB, 25KB, 50KB}

Publisher
{2KB, 25KB, 50KB}

Publisher
{2KB, 25KB, 50KB}

Figure 29 - Steady Increase/Payload Increase Network Setup

35

Operation [Fast/Slow] : Pub [1/0], Sub [2,3,4/0]

Payload Size [2KB, 25KB, 50KB]
Software

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2 Subx1000 3 Subx1000 4 Subx1000

Objects/[Subscribe/Publish]

Ti
m

e
(m

s)

0

5000

10000

15000

20000

25000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered
Software 2KB Software 25KB
Software 50KB

(a)

Operation [Fast/Slow] : Pub [1/0], Sub [2,3,4/0]

Payload Size [2KB, 25KB, 50KB]
Hardware

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2 Subx1000 3 Subx1000 4 Subx1000

Objects/[Subscribe/Publish]

Ti
m

e
(m

s)

0

5000

10000

15000

20000

25000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered
Hardware 2KB Hardware 25KB
Hardware 50KB

(b)

(a)

 2x1000 3x1000 4x1000
Objects
Published 2000 3000 4000

Objects Delivered 11788 17520 23487

Software 2KB 131377.2 189274.3 268981.6

Software 25KB 432059.3 648593.9 925448

Software 50KB 692692.5 1016010 1564901

 2x1000 3x1000 4x1000

Objects Published 2000 3000 4000

Objects Delivered 11788 17520 23487

Hardware 2KB 52307.5 63283 72858.08

Hardware 25KB 238033.7 256126.8 258350.4

Hardware 50KB 431924.5 486322.9 490261.6

(b)

Operation [Fast/Slow] : Pub [1/0], Sub [2,3,4/0]
Payload Size [2KB, 25KB, 50KB]
Hardware vs Software Delivery

0
200000
400000

600000
800000

1000000
1200000

1400000
1600000
1800000

2 Subx1000 3 Subx1000 4Subx1000
Hardw are 2KB Softw are 2KB

Hardw are 25KB Softw are 25KB

Hardw are 50KB Softw are 50KB
 (c)

Figure 30 - (a) Software Data, (b) Hardware Data, (c) Combined

7.4.1 Software JBI
Figure 30 (a) shows the software JBI experiences a much steeper increase in processing time
than the hardware JBI (shown in Figure 30 (b)). The software JBI is showing signs of heading
toward a saturation condition as increased subscriber load coupled with increases in payload size
causes a greater than expected increase in processing time. Referencing Table 4 below, “objects

36

delivered” load increases 49% and 34% (11788 to 17520, and 17520 to 23487), processing time
increases 44.1% and 42.1% as was shown in section 7.2. For the 25KB payload, processing time
increases 50.1% and 42.7% and for the 50KB payload, processing time increases 46.7% and
54.0%. The expected increase was a 49% increase in load causes a 44% increase in time (the
2KB is as expected, the 25KB and 50KB are slightly over at 50.1% and 46.7% respectively).
For the 34% increase in load, the expected increase in processing time would have been 31% (all
three cases, 2KB, 25KB, and 50KB were higher than 31% at 42.1%, 42.7% and 54%
respectively).

 2x1000 3x1000 2x->3x 4x1000 2x->4x 3x->4x
Objects
Published 2000 3000 50.0% 4000 100.0% 33.3%
Objects Delivered 11788 17520 48.6% 23487 99.2% 34.1%
Software 2KB 131377.2 189274.3 44.1% 268981.6 104.7% 42.1%
Software 25KB 432059.3 648593.9 50.1% 925448 114.2% 42.7%
Software 50KB 692692.5 1016010 46.7% 1564901 125.9% 54.0%

Table 4 - Percent Increase due to Subscriber Load Increase

Table 5 below shows the percent increase associated with increased payload size as compared to
the baseline 2KB payload based on the 2x1000, 3x1000, and 4x1000 subscriber loads. As object
size increases to 25KB, the software JBI undergoes an approximate 239% increase in processing
time across the three subscriber loading levels. Examining the increase from 2KB to 50KB
shows a processing increase of around 449% across subscriber loading levels. If the increase
from 25KB to 50KB is examined, the average processing increase is only about 62% indicating
that most of the processing delay has already been realized – or that the ability of the software
JBI to route a 50KB payload size is only slightly worse than its ability to route a 25KB payload
size. Clearly, payload size generates a larger impact on the performance of the software JBI than
just an increase in subscriber load from 2x1000, 3x1000, and 4x1000.

 Software 2KB 25KB 2KB->25KB 50KB 2KB->50KB 25KB->50KB
2x1000 131377.2 432059.3 228.9% 692692.5 427.3% 60.3%
3x1000 189274.3 648593.9 242.7% 1016010 436.8% 56.6%
4x1000 268981.6 925448 244.1% 1564901 481.8% 69.1%

Table 5 - Percent Increase due to Payload Size Increase

37

2x->3x
xKB/2KB 3x->4x

xKB/2KB

Software 25KB/2KB

Software 50KB/2KB
0.0%

100.0%

200.0%

300.0%

400.0%

500.0%

600.0%

Ratio of Increased Subscriber Load/Processing Time from
2KB Base Payload Size and Ranged across a Factor (2,3,4)

of Subscribers

Software 25KB/2KB Software 50KB/2KB

 2x1000 3x1000
2x->3x
xKB/2KB2 4x1000

3x->4x
xKB/2KB2

Objects
Published 2000 3000 4000
Objects
Delivered 11788 17520 23487
Software 2KB 131377.2 189274.3 268981.6
Software 25KB 432059.3 648593.9 274.0% 925448 247.3%
Software 50KB 692692.5 1016010 458.4% 1564901 588.6%

Figure 31 – Software Object Size Percentage Impact

Combining the results of both the increased payload size and increase in subscriber load allows
for a complete impact analysis. Referencing Figure 31 above, we see that going from 2000-
>3000 (with a 2KB payload) caused an increase of 274.0% and 247.3% for the 25KB payload
case, and 458.4% and 588.6% for the 50KB payload case.

Therefore, the software JBI system is performing less efficiently from the impact of both the
increased subscriber load and increased object size. Note that payload size has a greater impact
on this experiment than the subscriber load based on the above analysis. Combined impact is
approximately 260% for the software-25KB and approximately 515% for the software-50KB.
From this combined impact, the increase to 3x->4x took much longer to process than the increase

2 Values are calculated as follows: 1

2232
)225325(
−

−
−

xKSoftwarexKSoftware
xKSoftwarexKSoftware or 1

2.1313773.189274
3.4320599.648593
−

−
−

The numerator is the present object size delivery time and is the difference in delivery time at the two loading levels. The denominator is the
prior object size delivery time and is the difference in delivery time at the two loading levels. The fractional comparison of these two values and
subtracting one gives a percentage difference in time indicating how much longer the present object size required as compared to the prior object
size in terms of delivery time. Greater than 0 means it took comparatively longer, equal to 0 means it took the same amount of time, and less than
0 means it took comparatively less time to do the same action.

38

of 2x->3x indicating that the software JBI is getting behind in its ability to handle subscriber
load.

7.4.2 Hardware JBI
Figure 30 (b) shows that impact on the hardware JBI with increased load and increased payload
size is relatively small as compared to the software JBI (Figure 30 (a)). The 2KB payload size
results were as expected, but the results for the 25KB and 50KB payload size generated better
than expected results.

As was the case for the software JBI, “objects delivered” load increases 49% and 34%
respectively (11788 to 17520, and 17520 to 23487), processing time increases 21.0% and 15.1%
as shown in section 7.2. As shown in Table 6, for the 25KB payload, the processing time
increases 7.6% and 0.9% and for the 50KB payload, the processing time increases 12.6% and
0.8%. The increases shown for the 25KB and 50KB are better than expected as they not only
show a clear downward trend in the processing time as the load on the system increases, but also
indicate that the hardware JBI becomes more efficient under increased load and suffers minimal
performance impact related to an increased number of subscribers.

 2x1000 3x1000 2x->3x 4x1000 2x->4x 3x->4x
Objects
Published 2000 3000 50.0% 4000 100.0% 33.3%
Objects Delivered 11788 17520 48.6% 23487 99.2% 34.1%
Hardware 2KB 52307.5 63283 21.0% 72858.08 39.3% 15.1%
Hardware 25KB 238033.7 256126.8 7.6% 258350.4 8.5% 0.9%
Hardware 50KB 431924.5 486322.9 12.6% 490261.6 13.5% 0.8%

Table 6 - Percent Increase due to Subscriber Load Increase

Table 7 below shows the percent increase associated with the increased payload size as
compared to the 2KB baseline payload based on 2x1000, 3x1000, and 4x1000 subscriber loads.
As object size increases to 25KB, the hardware JBI has an approximate 305% increase in
processing time across the three subscriber loads. Looking at the increase from 2KB to 50KB
the processing time increase is approximately 650% across subscriber loading levels. As was the
case in the software JBI, the hardware JBI undergoes an approximate 85% increase in processing
time as object size increases from 25KB to 50KB – or that the hardware JBI is able to route a
50KB payload size slightly slower than a 25KB payload size. The performance impact on the
hardware JBI is more pronounced due to the payload size increase than to subscriber load
increase.

Hardware 2KB 25KB 2KB->25KB 50KB 2KB->50KB 25KB->50KB
2x1000 52307.5 238033.7 355.1% 431924.5 725.7% 81.5%
3x1000 63283 256126.8 304.7% 486322.9 668.5% 89.9%
4x1000 72858.08 258350.4 254.6% 490261.6 572.9% 89.8%

Table 7 - Percent Increase due to Payload Size Increase

39

Combining the results of both increased payload size and increase in subscriber load allows for a
complete analysis of impact. Referencing Figure 32 below, the graph is significantly different
then what was present in the software JBI graph shown in Figure 31. The subscriber load
increases from 2000->3000 (with a 2KB payload) caused an increase of 64.8% and a decrease of
-76.8% for the 25KB payload case, and a 395.6% increase followed by a -58.9% decrease for the
50KB payload case. These results are definitely unusual but are a based on the hardware JBI’s
unique ability to handle packets at line speed for rapid routing, duplication, XML processing,
and subscription fulfillment. Although the results are somewhat counter-intuitive, the hardware
JBI is clearly becoming more efficient in its ability to handle the increased subscriber load
coupled with increased payload size.

2x->3x
xKB/2KB 3x->4x

xKB/2KB

Hardware 25KB/2KB

Hardware 50KB/2KB
-100.0%

0.0%

100.0%

200.0%

300.0%

400.0%

Ratio of Increased Subscriber Load/Processing Time from
2KB Base Payload Size and Ranged across a Factor (2,3,4)

of Subscribers

Hardware 25KB/2KB Hardware 50KB/2KB

 2x1000 3x1000
2x->3x
xKB/2KB2 4x1000

3x->4x
xKB/2KB2

Objects
Published 2000 3000 4000
Objects
Delivered 11788 17520 23487
Hardware - 2K 52307.5 63283 72858.08
Hardware - 25K 238033.7 256126.8 64.8% 258350.4 -76.8%
Hardware - 50K 431924.5 486322.9 395.6% 490261.6 -58.9%

Figure 32 - Hardware Object Size Percentage Impact

7.4.3 Analysis
The delivered Objects/Second speed shown in Figure 28 highlights that hardware provides a
much higher throughput than software. The increased loading of this experiment contributes

40

minimally to objects delivery processing times, but as was shown in section 7.3, there is a
dramatic decrease in objects/second once the payload size increases beyond 2KB for both the
hardware and software instantiations. Hardware with a 2KB payload ranges from 225.4obj/s to
322.4obj/s and hardware with a 50KB payload ranges from 27.3obj/s to 47.9obj/s. These
processing speeds per object are continuing the upward trend shown in section 7.3 as related to
loading. In the case of software, a 2KB payload ranges from 89.7obj/s to 92.6obj/s, and
software with a 50KB payload ranges from 17.0obj/s to 17.2obj/s. As compared to section 7.3,
the hardware exhibits a further increase in the number of objects processed per second with
increased subscriber load, whereas the software exhibits similar behavior to the results in section
7.3 as the range is almost identical regardless of the increased subscriber load.

Objects Delivered/Second

0

50

100

150

200

250

300

350

2x1000 3x1000 4x1000

Objects Published

O
bj

ec
ts

/S
ec

on
d

Hardware - 2K Hardware - 25K Hardware - 50K Software - 2K Software - 25K Software - 50K

 2x1000 3x1000 4x1000
Objects Published 2000 3000 4000
Objects Delivered 11788 17520 23487
Hardware 2KB 225.3597 276.8516 322.3664
Hardware 25KB 49.52241 68.40362 90.91141
Hardware 50KB 27.29181 36.02545 47.90708
Software 2KB 89.7264 92.56406 87.31825
Software 25KB 27.28329 27.01228 25.37906
Software 50KB 17.01765 17.24392 15.00862

Figure 33 - Objects Delivered/Second

41

The data supports the conclusion that payload size affects performance more than increased
subscriber loading for both hardware and software JBI systems. Referencing Figure 30 (c) it is
clear that the software JBI is not nearly as capable as the hardware JBI in its ability to handle this
experiments increased loading. The relatively flat lines associated with the hardware JBI are in
stark contrast to the steeply increasing performance figures of the software JBI.

7.5 Heavy Load Case
The following experiment generated a heavy load on subscriber nodes with multiple publisher
nodes. Increased load was created through two actions – increase to three the number of
concurrent object publishers (one object type per publisher) and have each subscriber subscribe
to all three object types. The publishers publish each object type simultaneously. Subscribers
have three subscription operations in progress subscribing to each unique published object. This
experiment will give visibility into how a JBI system would handle a large number of subscribers
and how efficiently data can be distributed to multiple publishing nodes. Figure 34 shows the
network diagram indicating the object type for each publisher node and the multiple object types
at each subscribing node.

Subscriber
.basic
.ato
.xmlxpath

Publisher
.basic

Publisher
.xmlxpath

Publisher
.ato

Subscriber
.basic
.ato
.xmlxpath

Figure 34 - Heavy Load Network Setup

Figure 35 indicates the actual loading that occurred. The total number of subscriptions spread
between the two subscribing nodes was 1500, 3000, 6000, and 12000. The number of
ObjectsDelivered ranged from 1740 to 124316 so clearly there was a large load present.

42

Operation [Fast/Slow] : Pub [3/0], Sub [2x3/0]

0

500000

1000000

1500000

2000000

2500000

3000000

6x250 6x500 6x1000 6x2000

Objects/[Subscribe/Publish]

Ti
m

e
(m

s)

0

20000

40000

60000

80000

100000

120000

140000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered Software Hardware

Operation 6x250 6x500 6x1000 6x2000
Aggregate
Subscribers 1500 3000 6000 12000
Objects Delivered 1740 6774 32256 124316
Hardware 15191.94 36391.5 108809.9 332229.1
Software 32546.61 104980 461620.7 2494967

Figure 35 - Heavy Load Data

7.5.1 Software JBI
Software JBI data points shown in Figure 35 were approximately 2.1x slower than the hardware
JBI for the 6x250 loading level, and almost 7.5x slower for the 6x2000 loading level. Clearly, as
the load increases, the software based system struggles to maintain processing speed. The
loading increase of 1500 to 12000 subscription requests (8x increase) generates a 76x increase in
the time required to handle the subscriptions. The substantial increase in load leads to the much
greater increase in processing time.

7.5.2 Hardware JBI
Hardware JBI results presented in Figure 35 exhibited relatively steady behavior regardless of
loading. The example above shows that even with the subscription load increased from 1500 to
12000 objects (8x) causing a large increase in subscribed objects (1740 to 124316), the hardware
realized only a 2x increase in time required to handle subscriptions. Hardware efficiently
handled the increased load, both in the processing of the publish/subscribe operations, but also in
the duplication/routing decisions that occurred.

43

7.5.3 Analysis
The heavy load case illustrates a number of factors on how both systems scale under heavy load.
In the software JBI instance, as load increases, software gets further and further behind in its
ability to process the publication matches, and ultimately suffers from a 76x increase in
processing time from the 6x250 loading case to the 6x2000 case. On the other hand, hardware
experiences a roughly 2x increase in processing time for the same load increase. The hardware
is able to realize efficiencies that just are not possible with software, related to the ability to
process information at line speed, avoid the TCP/IP stack, and perform internal duplication of
objects for subscription fulfillment. Additionally, the hardware’s XML processing ability comes
into play as a large subscription tree has minimal impact on how quickly published objects are
routed to a subscribing client.

Furthermore, this experiment brought out a unique behavior in that the .ato object being
delivered was in five of the eight cases smaller than the number of published objects (so there
was little or no duplication and many published objects were just ignored since there was not a
corresponding subscription).

Object ObjectType ObjRecv Ratio
250 .basic 248 1:1

 .xmlxpath 550 1:2
 .ato 72 1:1/4

500 .basic 1149 1:2
 .xmlxpath 1909 1:4
 .ato 329 1:1/2

1000 .basic 5616 1:5
 .xmlxpath 9553.5 1:10
 .ato 958.5 1:1

2000 .basic 22371.5 1:10
 .xmlxpath 36672 1:18
 .ato 3114.5 1:1.5

Table 8 - Ratio of Published Objects to Delivered Objects

The ratios for this experiment are shown in Table 8 and contribute to the unique experimental
outcome. In the case of the .basic object, the ratio grew from 1:1, 1:2, 1:5, to 1:10. In the case
of the .xmlxpath object, the ratio grew 1:2, 1:4, 1:10, to 1:18. Lastly, in the case of the .ato
object, the ratio was 1:0.25, 1:0.5, 1:1, to 1:1.5. The introduction of the slower growing .ato
object ratio into this experiment caused the results to trend down dramatically and led to the
decrease shown in Figure 36 for the 6x250, 6x500, and 6x1000 runs. The .ato object had a
smaller number of delivered objects per offered load and this allowed the system to consume a
greater number of delivered objects from the other two publishers. For the object range of 6x250
through 6x1000 subscriber load and duplication where small enough that the system was able to
process the offered load somewhat faster than for the prior loading level (trend line is
downward). Only at the 6x2000 where the object duplication ratio was maximized for two of the
three cases and greater than one for the last case, did the time trend reverse and head higher for

44

the software JBI. Note that the lower values present because of low subscription fulfillment
attributed to the .ato object type imply that the averages would have increased considerably had
the .ato object type behaved as either of the other two object types (e.g. duplication ratios of
either .basic and .xmlxpath).

Hardware/Software Heavy Load Trend

y = 573.94x-0.5795

R2 = 0.9779

y = 2E-07x2 - 0.0024x + 21.525
R2 = 0.9757

0.0

5.0

10.0

15.0

20.0

25.0

0 2000 4000 6000 8000 10000 12000 14000

Number of Subscribers

Pr
oc

es
si

ng
 T

Im
e

(m
s/

ob
je

ct
)

Hardw are Softw are Pow er (Hardw are) Poly. (Softw are)

Operation 6x250 6x500 6x1000 6x2000
Aggregate Subscribers 1500 3000 6000 12000
Objects Delivered 1740 6774 32256 124316
Hardware Processing Time 8.7 5.4 3.4 2.7
Software Processing Time 18.7 15.5 14.3 20.1

Figure 36- Heavy Load Trend

Upon examining the trend line shown in Figure 36, it appears that the software JBI is trending up
under increased load after seeming to trend downward initially. The initial downward trend can
be attributed to how the six subscriber nodes are distributed – three subscribers on each client
with a total of 6x250, 6x500, and 6x1000 per subscriber – where the duplication ratios were
small and the actual ObjectsDelivered load was also relatively small. Only at the 6x2000 run
does the duplication ratio increase sufficiently based on the number of object delivered that the
trend line increases as would be expected. In the hardware JBI instance, we see a steady trend
downward. This trend downward is counter-intuitive, but based on the fact that the hardware get
more efficient with the greater load and quickly handles the replications that occur, this is
actually the expected result.

From an objects delivered/second perspective, Figure 37 highlights that hardware provides a
much higher throughput than software. Hardware is within the increasing range of 114.5obj/s
and 374.2obj/s whereas Software is within a steadier range of 53.5obj/s and 69.9obj/s. The

45

heavy subscriber load causes little impact on the hardware, but causes the software to publish
fewer objects per second when compared to the prior experiments at this payload size.

Objects Delivered/Second

0

50

100

150

200

250

300

350

400

6x250 6x500 6x1000 6x2000

Objects Published

O
bj

ec
ts

/S
ec

on
d

Hardw are Softw are

Operation 6x250 6x500 6x1000 6x2000
Aggregate Subscribers 1500 3000 6000 12000
Objects Delivered 1740 6774 32256 124316
Hardware 114.5344 186.1424 296.444 374.1876
Software 53.46179 64.52658 69.876 49.82671

Figure 37 - Objects Delivered/Second

To elaborate further on hardware speed, data shown in Figure 38 (a) and (b) are compared from
an aggregate subscription standpoint and the ObjectsDelivered to fulfill the aggregate
subscriptions. The number of ObjectsDelivered to fill the aggregate subscription is actually a
more accurate indicator, as that is how many objects routed through particular solution.

46

Operation [Fast/Slow] : Pub [1/0], Sub [3/0]

Software

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1

Ti
m

e
(m

s)

Software 3x1000 Software 6x500
Software 6x1000 Software 3x2000

(a)

Operation [Fast/Slow] : Pub [1/0], Sub [3/0]

Hardware

0

50000

100000

150000

200000

250000

300000

1

Ti
m

e
(m

s)

Hardware 3x1000 Hardware 6x500

Hardware 6x1000 Hardware 3x2000

(b)

Operation Subscriptions ObjectsDelivered
Time
(ms) Ms/obj

Software
3x1000 3000 17520 189274.3 10.80333
Software
6x500 3000 6774 104980 15.49749
Software
6x1000 6000 32256 461620.7 14.31116
Software
3x2000 6000 69327 945826.9 13.64298

Operation Subscriptions ObjectsDelivered

Time
(ms) ms/obj

Hardware
3x1000 3000 17520 63283 3.612043
Hardware
6x500 3000 6774 36391.5 5.372232
Hardware
6x1000 6000 32256 108809.9 3.373322
Hardware
3x2000 6000 69327 269248.4 3.883746

Figure 38 - Subscriber Count Comparison

The following evaluation is an attempt to compare facets of two experiments to see how the
results compare. Results from section 7.1 (fast subscriber) are compared to the results in the
present section.

- The 3x1000 and 6x500 runs were chosen since they both had 3000 subscribers
- The 6x1000 and 3x2000 runs were chosen since they both had 6000 subscribers.

Looking at a similar number of subscriptions from two experiments gives visibility into how
accurate a subscription count is at predicting behavior. In the case of the 3000 subscriber load,
the number of subscribing objects match (6x500 = 3x1000) but the number of DeliveredObjects
differs by a factor of three (6774 = 17520). As can be seen in Figure 38 (a) and (b), both the
hardware and software JBI experience an approximate doubling in time, or 105s to 189s and 36s
to 63s respectively. In the case of the 6000 subscriber load, the DeliveredObjects is also a factor
of two differences (32256 = 69327) and a similar behavior is observed as the software and
hardware double from 461s to 946s and 109s to 269s respectively.

Differing experimental setups would have caused routing object trees of differing complexity.
While the total number of subscribing nodes was similar, the number of ObjectsDelivered
differed considerably. The 6xValue runs were spread more “thinly” than the 3xValue runs – so
the subscriber density was less. As such, the publishers were only publishing 500 and 1000 for
the 6xValue runs, whereas for the 3xValue runs the publishers published 1000 and 2000 objects

47

respectively. The larger number of published objects provided a greater possibility that the
object would fulfill multiple subscription entries.

Therefore, the conclusion drawn is that the 3xValue runs will be more efficient due to the greater
amount of subscriber fulfillment from a given published object (e.g. duplication). This is
supported from the object/millisecond times shown above: for the 3xValue runs the times are
10.8ms/object and 13.6ms/object for software and 3.6ms/object and 3.9ms/object for hardware.
For the 6xValue runs the data are 15.5ms/object and 14.3ms/object for software and 5.4ms/object
and 3.4ms/object for hardware. In the software case, it is easy to see that the 6xValue runs as
slower than the 3xValue runs. In the hardware case, the 6x500 run takes longer as expected but
the 6x1000 run is actually faster – which is directly related to prior findings that hardware in this
particular solution setup performs better under increased load due to the efficiencies available for
object duplication and distribution.

7.6 Saturation Case
The following experiment showed a saturation case. Figure 39 shows that experimental setup
consisted of one subscriber node on either a fast or slow system with four remaining nodes as
fast publishers. Publishing nodes were simultaneously publishing the same object type as rapidly
as possible and the subscribing node had to consume the published objects as quickly as possible.
The speed of publish operations on each computer was controlled by how quickly the subscriber
could process the object received and acknowledge to the server that the object had been
received. A saturation condition occurs if the subscriber is unable to successfully process the
offered load from the publishers. The expected outcome is that both the hardware and software
JBI would be able to consume all published objects at the subscriber regardless of the speed of
the subscriber, although it is expected that the slow subscriber will take significantly longer than
the fast subscriber.

Publishers Publishers

Fast Subscriber Slow Subscriber
Figure 39 - Saturation Network Setup

7.6.1 Software JBI
Software JBI results for both the fast and slow subscriber case are presented below in Figure 40.
A saturation condition occurred as neither subscriber (fast/slow) could successfully complete the
4x2000 loading run. Examining the 4x250, 4x500, and 4x1000 runs it is evident that similar
behavior is exhibited for both the 4x250 and 4x500 runs for both fast and slow subscribers. Only
at the 4x1000 run is there a large divergence of behavior. In the 4x250 and 4x500 cases, the load

48

is small enough that the subscriber is able to process published objects regardless of subscriber
speed. The number of DeliveredObjects increases 359% and 387% as loading levels increase to
4x500 and 4x1000 – an approximate equal increase in load. Although the increase in
DeliveredObjects is approximately equal, there is a much larger increase in processing time of
approximately 255% as load increases to 4x500 and 563% (fast)/668% (slow) as load increases
to 4x1000 as shown in Table 9. The 4x1000 experiment shows a significant difference in
behavior for the slow/fast subscribers as the load increase is similar but the processing time
increase is substantial. Examining the charts in Figure 40 and extrapolating, it is easy to see that
the 4x2000 run would have taken an inordinately large amount of time had it been able to
execute due to the increased size of the 4x2000 run.

Operation [Fast/Slow] : Pub [4/0], Sub [1/0]

0

100000

200000

300000

400000

500000

600000

700000

800000

250 500 1000 2000

Objects/[Subscribe/Publish]

Ti
m

e
(m

s)

0

20000

40000

60000

80000

100000

120000

140000

160000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered Hardware Software

 Operation [Fast/Slow] : Pub [4/0], Sub [0/1]

0

100000

200000

300000

400000

500000

600000

700000

800000

250 500 1000 2000

Objects/[Subscribe/Publish]

Ti
m

e
(m

s)

0

20000

40000

60000

80000

100000

120000

140000

160000

O
bj

ec
ts

 D
el

iv
er

ed

Objects Published Objects Delivered Hardware Software

Operation 4x250 4x500 4x1000 4x2000
Aggregate
Subscribers 1000 2000 4000 8000
Aggregate
Subscribed Objects 2843 10209 39535 151111
Hardware [Fast
Subscriber] 20245 39547 92666.33 240926.7
Software [Fast
Subscriber] 34078.33 86213.67 485494.7 N/A

Operation 4x250 4x500 4x1000 4x2000
Aggregate
Subscribers 1000 2000 4000 8000
Aggregate Subscribed
Objects 2843 10209 39535 151111
Hardware [Slow
Subscriber] 25186.67 63017.33 208016.3 734135.3
Software [Slow
Subscriber] 38105 97443.67 651039.7 N/A

Figure 40 - Saturation Data

Base 4x250 4x500 4x1000 4x2000 Base 4x250 4x500 4x1000 4x2000

DeliveredObjects 359.09% 387.26% 382.22% DeliveredObjects 359.09% 387.26% 382.22%

HardwareFast 195.34% 234.32% 259.99% HardwareSlow 250.20% 330.09% 352.92%

SoftwareFast 252.99% 563.13% N/A SoftwareSlow 255.72% 668.12% N/A
Table 9 - Percent Increase in Object and Processing Speed from Base of 4x250

7.6.2 Hardware JBI
Hardware JBI is able to avoid entering a saturation condition for both fast and slow subscribing
nodes. Unlike the software JBI case, the hardware JBI shows a progressive increase across all
four loading scenarios, although this increase is lower than the software JBI in every instance.
As load steadily increases from 4x250, to 4x500, to 4x1000, and to 4x2000 the percentage
increase in load is approximately 359-387% across loading levels - or an approximate equal
increase in load. Processing time also increases across this loading but at a more gradual pace,
increasing 195%(fast) / 250%(slow) from 2x250 to 2x500, increasing 235% (fast) / 330%(slow)

49

from 2x500 to 2x1000, and finally increasing 260%(fast) / 353%(slow) from 2x1000 to 2x2000.
This steady increase in processing time highlights additional latency of processing increased
load, but overall processing time is increasing in a gradual manner with increased load.

7.6.3 Analysis

Aggregate Hardware/Software Fast/Slow Sub

0

100000

200000

300000

400000

500000

600000

700000

800000

250 500 1000 2000

Loading Level

Ti
m

e(
m

s)

Hardware (fast sub) Software (fast sub)

Hardware (slow sub) Software (slow sub)

Operation 4x250 4x500 4x1000 4x2000
Aggregate Subscribers 1000 2000 4000 8000
Aggregate Subscribed
Objects 2843 10209 39535 151111
Hardware [Fast Subscriber] 20245 39547 92666.33 240926.7
Hardware [Slow Subscriber] 25186.67 63017.33 208016.3 734135.3
Software [Fast Subscriber] 34078.33 86213.67 485494.7 N/A
Software [Slow Subscriber] 38105 97443.67 651039.7 N/A

Figure 41 - Aggregate Hardware/Software Fast/Slow Subscriber

Figure 41 (above) shows aggregation of the time for hardware/software and fast/slow subscriber.
As was expected, as loading levels increase the impact of a slow subscriber node is more
pronounced. The 4x250 run show similar behavior for all four cases. In the 4x500 case a
divergence starts to appear as the hardware JBI more noticeably separates from the software JBI

50

and this time is further separated based on the fast/slow subscriber. The 4x1000 shows a
pronounced difference between all runs as compared to hardware/fast, ranging from 100%
slower for hardware/slow, 500% slower for software/fast, and 650% slower for software/slow.
Lastly, the 4x2000 case was only successful on the hardware configuration. The hardware/slow
indicates that the hardware JBI was having difficulty maintaining its processing speed at the
higher loading levels of this experiment as the slow subscriber was dramatically slowing the
process down.

The above results translate into real world metrics for processing time and present a picture of
how rapidly a subscribing node can get data distributed to it.

Software Fast/Slow Published Object Processing

0
2
4
6
8

10
12
14
16
18

250 500 1000 2000

Loading Level

Ti
m

e
to

 P
ub

lis
h

O
ne

O

bj
ec

ts
 (m

s)

Ratio (Published Objects/Software FastSub) Ratio (Published Objects/SoftwareSlowSub)

Operation 4x250 4x500 4x1000 4x2000
Aggregate Subscribers 1000 2000 4000 8000
Aggregate Subscribed Objects 2843 10209 39535 151111
Software [Fast Subscriber] 34078.33 86213.67 485494.7 N/A
Time (ms/obj) 11.98675 8.444869 12.28012 N/A
Software [Slow Subscriber] 38105 97443.67 651039.7 N/A
Time (ms/obj) 13.4031 9.544879 16.46743 N/A
Ratio (SoftwareFastSub/SoftwareSlowSub) 1.118159 1.130258 1.340982 N/A

Figure 42 - Software Fast/Slow Object Processing

The ratio of the software/fast to software/slow shows that as the load increases the processing
time per PublishedObject initially decreases then increases as shown in Figure 42. Software/fast
consumes 12.0ms for the smallest loading level, this drops to 8.4ms for the 4x500 loading level,
then increases to 12.3ms for the highest loading level. The software/slow follows a similar
loading level curve as the 4x250 run takes 13.4ms, the 4x500 runs takes 9.5ms, and the 4x1000
takes 16.5ms per PublishedObject. The reason for the drop in processing time of the 4x500 run
is unclear for both the software/fast and software/slow. An increase in processing time is
expected as the software system is under heavier loading as the subscribing levels increase – and
each object must traverse the TCP/IP stack and be ingested fully before being processed. The

51

ratio of SoftwareFastSub/SoftwareSlowSub is increasing indicating that the time difference
between the slow and fast subscriber is increasing (which is visible in the graph shown in Figure
42). Had the 4x2000 run been successful, a more complete conclusion might have been
available.

Hardware Fast/Slow Published Object Processing

0

2

4

6

8

10

250 500 1000 2000

Loading Lev el

Ti
m

e
to

 P
ub

lis
h

O
ne

 O
bj

ec
ts

 (m
s)

Rat io (Published Object s/ HardwareFast Sub) Rat io (Published Object s/ HardwareSlowSub)

Operation 4x250 4x500 4x1000 4x2000
Aggregate Subcribers 1000 2000 4000 8000
Aggregate Subscribed Objects 2843 10209 39535 151111
Hardware [Fast Subscriber] 20245 39547 92666.33 240926.7
Time (ms/obj) 7.120999 3.873739 2.343906 1.594369
Hardware [Slow Subscriber] 25186.67 63017.33 208016.3 734135.3
Time (ms/obj) 8.859186 6.172723 5.261574 4.858252
Ratio (HardwareFastSub/HardwareSlowSub) 1.244093 1.593479 2.244789 3.047132

Figure 43 - Hardware Fast/Slow Object Processing

Using Figure 43, and comparing the ratio of the hardware/fast to hardware/slow we see that as
load increases, processing time per PublishedObject decreases from 7.12ms per subscriber
fulfillment object then to 1.6ms per subscriber object. A similar decrease is present on the
hardware/slow as it takes 8.9ms per PublishedObject initially to 4.9ms at the end. Hardware
realizes efficiencies under higher loading as packet duplication and transmission are
accomplished internally at close to line speed. The hardware/slow is expected to be higher as the
additional latency caused by the slow subscriber will cause the systems routing speed to decrease
as the system awaits the acknowledgement from the slow subscriber. Lastly, the ratio of
HardwareFastSub/HardwareSlowSub shows a dramatic increase from 1.24, 1.59, 2.24, and 3.04
– this value indicates that as the loading level increases the slow subscriber causes more delay
and the difference in processing time between a slow subscriber and a fast subscriber grows
considerably (3.04x difference at 4x2000).

From an objects delivered/second perspective, Figure 44 highlights that hardware provides a
much higher throughput than software. Hardware with a fast subscriber is within the increasing

52

range of 140.4obj/s and 627.2obj/s whereas hardware with a slow subscriber is within the range
of 112.9obj/s and 205.8obj/s – clearly the slow subscriber affects the speed at which the JBI can
fulfill publication requests. Software with a fast subscriber is within a smaller range of 83.4obj/s
and 118.4obj/s, and software with a slow subscriber ranges across 60.7obj/s and 104.8obj/s. In
the software case, the 4x1000 run indicates that the obj/s processing speed is trending downward
rapidly. The results for the 4x1000 run were not available due to the JBI becoming saturated and
crashing during the experiment execution.

Objects Delivered/Second

0

100
200

300

400

500
600

700

4x250 4x500 4x1000 4x2000

Objects Published

O
bj

ec
ts

/S
ec

on
d

Hardw are [Fast Subscriber] Hardw are [Slow Subscriber]

Softw are [Fast Subscriber] Softw are [Slow Subscriber]

Operation 4x250 4x500 4x1000 4x2000
Aggregate Subcribers 1000 2000 4000 8000
Aggregate Subscribed Objects 2843 10209 39535 151111
Hardware [Fast Subscriber] 140.4297 258.1485 426.6382 627.2074
Hardware [Slow Subscriber] 112.8772 162.003 190.0572 205.8353
Software [Fast Subscriber] 83.42544 118.4151 81.43241 N/A
Software [Slow Subscriber] 74.60963 104.7682 60.72595 N/A

Figure 44 - Objects Delivered/Second

53

Saturation Trend

y = 975.29x-0.7202

R2 = 0.9901
y = 57.992x-0.2831

R2 = 0.9035

y = 2E-06x2 - 0.009x + 19.168
R2 = 1

y = 2E-06x2 - 0.0112x + 22.141
R2 = 1

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Subscribers

Pr
oc

es
si

ng
 T

im
e

(m
s/

ob
je

ct
)

Hardware - Fast Hardware - Slow Software - Fast Software - Slow

Power (Hardware - Fast) Power (Hardware - Slow) Poly. (Software - Fast) Poly. (Software - Slow)

Figure 45 - Saturation Trend

Figure 45 presents processing time trends associated with hardware and software JBI systems.
As the trend lines indicate, the trend associated with the software JBI is polynomial increasing as
subscription load increases – leading to greater processing time per object. The trend associated
with the hardware JBI is decreasing according to a power regression line indicating that
hardware becomes more efficient with increased subscription load (which has a higher level of
duplicated objects).

8 Follow-on Work
There are a number of areas that have yet to be explored looking at hardware acceleration for the
JBI system.

- Accurate Network Topology: Include multiple subnets, routers, firewalls, and XML
routers with a variety of publishing systems. Base client applications on what is
expected to be fielded and determine how the network topology influences the speed
of the JBI system. Furthermore, examine cascading of XML routers for complicated
network scenarios.

- Traffic Generation: insert a traffic generator into the network to increase load. This
would more accurately resemble what a fielded JBI system would have to contend
with in its normal operational environment

- Deeper XPATH/Metadata trees: Increase complexity and depth of XML messages.
Increased XML adds to complexity and allows for a more accurate depiction of traffic
available on the network. It is probably reasonable to assume that a sample published

54

object (intel, weather, etc.) would contain multiple XML levels, multiple fields, and
verbose descriptions of content.

- Payload sizes: Randomize payload sizes, number of embedded objects, and types.
Increase realism of data objects to more accurately reflect real-world type data.

- Encryption/Signing/Hashing: Include these real-world operations in the experiment as
these are processor and time consuming operations. A fielded JBI would need to
support these types of operations.

- Control duplication: By duplication I am referring to subscriber fulfillment. I opted
to allow for a single published object to fulfill as many subscriptions as possible in
order to increase load. The side effect of this action was that the hardware JBI could
do this very efficiently. The data that was not gathered relates to “what if” all
publications/subscriptions are 1:1 or maybe only have 5% duplication. Adding in a
setting for duplication is critical to determining a more accurate picture of
publish/subscribe operations.

- Full Hardware JBI: Implement the hardware JBI using only the steps required of the
CAPI. For comparison purposes only minimal changes were made to the CAPI to
incorporate hardware so many wasteful operations were executed on the hardware
path. Remove all extraneous software processing from the hardware path to get the
best hardware JBI implementation.

- Incorporate a true Hardware JBI router: The router provided by Sarvega was a
commercial product that they modified the software to support the JBI experiment. A
true hardware router would be optimized in both hardware and software and should
provide the most efficient JBI implementation for execution.

9 Conclusion
The integration of a hardware based eXtensible Markup Language (XML) processor into the JBI
architecture was a success. The integration was invisible to the user and worked seamlessly with
no changes to JBI client software and only minor changes to the JBI provided core framework.
Results gathered reflect the simplest change to the JBI framework operation in that the final step
of the publish/subscribe operation was done differently using hardware – this was to make
comparisons between both solutions as simple and fair as possible. Had all of the extraneous
RMI/JMS operations been removed from the Hardware JBI results for the Hardware JBI would
have been even better – as the present solution allows approximately 200 packets to traverse the
network for each publish/subscribe to support RMI/JMS (which aren’t used by the hardware
JBI). Additionally, Base64 encoding added approximately 33% overhead to all hardware JBI
packets that was not present with the software JBI implementation.

The experiment outcomes were not surprising. The software JBI is facing a number of hurdles
not present with the hardware JBI, most notably that the software JBI is not running on a
dedicated, XML aware, network router. The ability of the hardware JBI to leverage the unique
capabilities provided by fact that it is a network appliance are crucial to its ability to rapidly
outperform the software JBI. The hardware JBI could process at line speed, as it is an in-line
network router and could parse the Layer 7 XML data without traversing a TCP/IP stack.

55

Additionally, the hardware JBI could natively understand XML and XPATH expression logic to
perform logical operations on the data and could rapidly route published data to subscribers
using a state machine mechanism that provided efficient packet duplication for multiple
subscriber fulfillments.

Dedicated XML aware hardware is crucial to the successful fielding of a JBI system as that is the
only hope of processing the sheer volume of information expected to be present. XML aware,
Layer 7 routing of the payload at line speeds is a unique operation that is only possible with a
hardware type device – which additionally can leverage custom designed hardware components
to more efficiently process the tree structures presented by XML. Insert encryption, document
signing and hashing, secure connection setup and the software JBI falls further and further
behind since it does not contain dedicated hardware to perform these CPU intensive operations –
the hardware device contained hardware encryption capability although this was not explored in
this experiment – but hardware encryption far surpasses any software based encryption scheme.

At low loading levels, the two implementations behaved similarly as was expected. Only at
higher loading levels did the differences in implementation become apparent – most notably the
time required to handle the offered subscription load. Payload size appeared to have a greater
impact on both solutions than increased subscriber load. Payload size is going to be relatively
arbitrary and spread across a wide range of values – ranging from a small text based message to a
large image or video with a huge XML metadata portion. The JBI system can more efficiently
distribute a smaller message to more subscribers and this should be taken into account for
subsequent JBI development.

 The hardware JBI presented the counter-intuitive result of becoming more efficient under
greater loading. This result was due to the ability of the hardware to rapidly disseminate a
processed publication request at minimal cost, so under higher loading where a single published
object will fulfill a larger number of subscriptions, the hardware paid an upfront penalty then
could cheaply replicate and send it multiple times. The software JBI had to perform a software
duplication of each packet then traverse the TCP/IP stack to distribute the fulfillment to the
subscribing nodes.

The data distribution abilities of both systems were captured by the objects delivered per second
metric. The hardware had a much wider range of values than the software and generally
performed better with increased subscriber loading – leveraging its inherent ability to rapidly
route published data to multiple subscribers. In the case of software, the range of behavior was
much more restricted and never exceeded the hardware speed for a given experiment. Across all
loading levels and payload sizes, hardware ranged from 14.2obj/s to 627.2obj/s and software
ranged from 16.4obj/s to 118.4obj/s. The lower bounds were similar, but the upper bounds show
an over 5x increase in objects per second processed for hardware.

In conclusion, the hardware JBI system was faster than the software JBI for all experiments
performed. The range of improvement was dependent on the configuration of the experiment,
but improvements ranged from 340% to 750% faster at the x2000 loading levels. Therefore, the

56

JBI of the future will have to have XML hardware aware routers at its foundation in order to
provide the best performance. Tangible performance and scalability benefits available from
hardware will far exceed the larger upfront cost of a dedicated hardware router.

57

10 Appendix A – Raw Data

10.1 Experiment 1

10.1.1 Hardware JBI – Object Size 2KB
Computer Action ObjectType Seed Object ObjRecv TotalTime ObjRecv TotalTime ObjRecv TotalTime AvgTime
#1 pub .basic 1141 250
#2 sub .basic 141 250 451 16640 451 11890 451 11485 13338.33 13297.44
#3 sub .basic 142 250 476 16625 476 11875 476 11484 13328
#4 sub .basic 143 250 385 16504 385 11797 385 11377 13226

#1 pub .basic 1141 500
#2 sub .basic 141 500 1519 30797 1519 30750 1519 29656 30401 30404.22
#3 sub .basic 142 500 1672 30797 1672 30765 1672 29672 30411.33
#4 sub .basic 143 500 1549 30794 1549 30754 1549 29653 30400.33

#1 pub .basic 1141 1000
#2 sub .basic 141 1000 5492 88515 5492 82625 5492 80266 83802 83465.56
#3 sub .basic 142 1000 6296 88500 6296 79688 6296 80265 82817.67
#4 sub .basic 143 1000 5732 88487 5732 82608 5732 80236 83777

#1 pub .basic 1141 2000
#2 sub .basic 141 2000 22860 287282 22860 288109 22860 287906 287765.7 287755
#3 sub .basic 142 2000 22765 287281 22765 288094 22765 287891 287755.3
#4 sub .basic 143 2000 23702 287263 23702 288085 23702 287884 287744

10.1.2 Software JBI – Object Size 2KB
Computer Action ObjectType Seed Object ObjRecv TotalTime ObjRecv TotalTime ObjRecv TotalTime AvgTime
#1 pub .basic 1141 250
#2 sub .basic 141 250 451 17016 451 21953 451 16672 18547 18266
#3 sub .basic 142 250 476 17031 476 21953 476 16672 18552
#4 sub .basic 143 250 385 16865 385 19788 385 16444 17699

#1 pub .basic 1141 500
#2 sub .basic 141 500 1519 53547 1519 58922 1519 60922 57797 57782.11
#3 sub .basic 142 500 1672 53578 1672 58969 1672 60922 57823
#4 sub .basic 143 500 1549 53507 1549 58845 1549 60827 57726.33

#1 pub .basic 1141 1000
#2 sub .basic 141 1000 5492 198969 5492 212469 5492 221219 210885.7 210887
#3 sub .basic 142 1000 6296 198984 6296 212578 6296 221266 210942.7
#4 sub .basic 143 1000 5732 198865 5732 212475 5732 221158 210832.7

#1 pub .basic 1141 2000
#2 sub .basic 141 2000 22860 992672 22860 896766 22860 1041969 977135.7 977102
#3 sub .basic 142 2000 23702 992610 22765 896781 22765 1041969 977120
#4 sub .basic 143 2000 22765 992703 23702 896570 23702 1041878 977050.3

58

10.2 Experiment 2

10.2.1 Hardware JBI – Object Size 2KB
Computer Action ObjectType Seed Object ObjRecv TotalTime ObjRecv TotalTime ObjRecv TotalTime AvgTime
#2 pub .basic 1141 1000
#3 sub .basic 142 1000 11788 6296 53406 6296 51313 6296 52203 52307.33 52307.5
#5 sub .basic 141 1000 5492 53407 5492 51313 5492 52203 52307.67

#1 sub .basic 141 250 1312 451 10359 451 9953 451 9688 10000 9972.222
#2 pub .basic 1141 250
#3 sub .basic 143 250 385 10265 385 9875 385 9610 9916.667
#5 sub .basic 142 250 476 10375 476 9953 476 9672 10000

#1 sub .basic 141 500 4740 1519 23078 1519 24000 1519 23078 23385.33 23383.89
#2 pub .basic 1141 500
#3 sub .basic 143 500 1549 23079 1549 24000 1549 23078 23385.67
#5 sub .basic 142 500 1672 23079 1672 24000 1672 23063 23380.67

#1 sub .basic 141 1000 17520 5492 64093 5492 63938 5492 61828 63286.33 63283
#2 pub .basic 1141 1000
#3 sub .basic 143 1000 5732 64094 5732 63922 5732 61828 63281.33
#5 sub .basic 142 1000 6296 64078 6296 63938 6296 61828 63281.33

#1 sub .basic 141 2000 69327 22860 264125 22860 280297 22860 263328 269250 269248.4
#2 pub .basic 1141 2000
#3 sub .basic 143 2000 23702 264110 23702 280312 23702 263313 269245
#5 sub .basic 142 2000 22765 264094 22765 280328 22765 263329 269250.3

#1 sub .basic 141 1000 23487 5492 73109 5492 73078 5492 72360 72849 72858.08
#2 sub .basic 144 1000 5967 73141 5967 73078 5967 72375 72864.67
#3 pub .basic 1141 1000
#5 sub .basic 143 1000 5732 73125 5732 73094 5732 72375 72864.67
#6 sub .basic 142 1000 6296 73141 6296 73062 6296 72359 72854

59

10.2.2 Software JBI – Object Size 2KB
Computer Action ObjectType Seed Object ObjRecv TotalTime ObjRecv TotalTime ObjRecv TotalTime AvgTime
#2 pub .basic 1141 1000
#3 sub .basic 142 1000 11788 6296 134265 6296 130576 6296 129344 131395 131377.2
#5 sub .basic 141 1000 5492 134250 5492 130500 5492 129328 131359.3

#1 sub .basic 141 250 1312 451 16765 451 16735 451 16610 16703.33 16670.11
#2 pub .basic 1141 250
#3 sub .basic 143 250 385 16687 385 16640 385 16515 16614
#5 sub .basic 142 250 476 16766 476 16719 476 16594 16693

#1 sub .basic 141 500 4740 1519 51516 1519 54862 1519 51609 52662.33 52595.56
#2 pub .basic 1141 500
#3 sub .basic 143 500 1549 51531 1549 54563 1549 51609 52567.67
#5 sub .basic 142 500 1672 51515 1672 54562 1672 51593 52556.67

#1 sub .basic 141 1000 17520 5492 189078 5492 188938 5492 189703 189239.7 189274.3
#2 pub .basic 1141 1000
#3 sub .basic 143 1000 5732 189109 5732 189000 5732 189750 189286.3
#5 sub .basic 142 1000 6296 189172 6296 189000 6296 189719 189297

#1 sub .basic 141 2000 69327 22860 941000 22860 877782 22860 1005406 941396 945826.9
#2 pub .basic 1141 2000
#3 sub .basic 143 2000 22765 941031 23702 897812 23702 1005407 948083.3
#5 sub .basic 142 2000 23702 940813 22765 897797 22765 1005394 948001.3

#1 sub .basic 141 1000 23487 5492 269623 5492 267859 5492 269422 268968 268981.6
#2 sub .basic 144 1000 5967 269703 5967 267859 5967 269437 268999.7
#3 pub .basic 1141 1000
#5 sub .basic 143 1000 5732 269609 5732 267828 5732 269438 268958.3
#6 sub .basic 142 1000 6296 269688 6296 267860 6296 269453 269000.3

10
.3

 E
xp

er
im

en
t 3

10
.3

.1

H
ar

dw
ar

e
JB

I –
 2

5K
B

 a
nd

 5
0K

B
 O

bj
ec

t S
iz

e

25

K
B

 O
bj

ec
t S

iz
e

50

K
B

 O
bj

ec
t S

iz
e

C
om

pu
te

r
A

ct
io

n
O

bj
ec

tT
yp

e
S

ee
d

O
bj

ec
t

O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
A

vg
Ti

m
e

O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
A

vg
Ti

m
e

#2

pu

b
.b

as
ic

11

41

10
00

#3

su
b

.b
as

ic

14
2

10
00

62
96

22

42
97

62

96

25
67

65

62
96

23

29
68

23

80
10

23

80
33

.7

62
96

45

36
41

62

96

42
36

72

62
96

41

84
22

43

19
11

.7

43
19

24
.5

#5

su

b
.b

as
ic

14

1
10

00

54

92

22
43

29

54
92

25

68
12

54

92

23
30

31

23
80

57
.3

54
92

45

36
56

54

92

42
37

03

54
92

41

84
53

43

19
37

.3

#1

su

b
.b

as
ic

14

1
25

0

45
1

62
12

5
45

1
57

56
3

45
1

53
76

5
79

01
0.

33

78
72

7.
22

45

1
90

82
8

45
1

92
43

8
45

1
94

04
7

92
43

7.
67

92

11
8

#2

pu
b

.b
as

ic

11
41

25

0

#3

su
b

.b
as

ic

14
3

25
0

38

5
61

73
5

38
5

57
11

0
38

5
53

28
1

78
27

0.
67

38
5

89
96

9
38

5
91

56
2

38
5

93
17

2
91

56
7.

67

#5

su

b
.b

as
ic

14

2
25

0

47
6

62
10

9
47

6
57

50
0

47
6

53
67

2
78

90
0.

67

47

6
90

79
6

47
6

92
23

4
47

6
94

01
6

92
34

8.
67

#1

su
b

.b
as

ic

14
1

50
0

15

19

12
52

97

15
19

12

55
00

15

19

11
29

84

12
12

60
.3

12

09
18

.4

15
19

22

55
62

15

19

21
64

07

15
19

20

31
88

21

50
52

.3

21
61

54
.7

#2

pu

b
.b

as
ic

11

41

50
0

#3

su

b
.b

as
ic

14

3
50

0

15
49

12

53
28

15

49

12
55

00

15
49

11

29
84

12

12
70

.7

15

49

22
56

41

15
49

21

64
06

15

49

20
32

19

21
50

88
.7

#5

su
b

.b
as

ic

14
2

50
0

16

72

12
52

66

16
72

12

24
69

16

72

11
29

38

12
02

24
.3

16
72

22

55
47

16

72

21
63

44

16
72

21

30
78

21

83
23

#1

su
b

.b
as

ic

14
1

10
00

54
92

26

12
81

54

92

25
31

72

54
92

25

40
31

25

61
61

.3

25
61

26
.8

54

92

48
45

47

54
92

49

84
38

54

92

47
60

16

48
63

33
.7

48

63
22

.9

#2

pu
b

.b
as

ic

11
41

10

00

#3

su

b
.b

as
ic

14

3
10

00

57

32

26
12

65

57
32

25

31
10

57

32

25
40

16

25
61

30
.3

57
32

48

45
62

57

32

49
84

06

57
32

47

60
31

48

63
33

#5

su
b

.b
as

ic

14
2

10
00

62
96

26

12
19

62

96

25
30

78

62
96

25

39
69

25

60
88

.7

62

96

48
45

16

62
96

49

84
22

62

96

47
59

68

48
63

02

#1

su

b
.b

as
ic

14

1
20

00

22

86
0

65
37

35

22
86

0
65

64
37

22

86
0

66
13

60

65
71

77
.3

65

71
21

.7

22
86

0
12

82
84

3
22

86
0

12
78

26
5

22
86

0
12

27
65

6
12

62
92

1
12

62
90

4
#2

pu

b
.b

as
ic

11

41

20
00

#3

su
b

.b
as

ic

14
3

20
00

23
70

2
65

36
72

23

70
2

65
64

07

23
70

2
66

12
81

65

71
20

23
70

2
12

82
76

5
23

70
2

12
78

17
2

23
70

2
12

27
64

1
12

62
85

9

#5

su
b

.b
as

ic

14
2

20
00

22
76

5
65

33
90

22

76
5

65
64

53

22
76

5
66

13
60

65

70
67

.7

22

76
5

12
82

81
2

22
76

5
12

78
28

2
22

76
5

12
27

70
3

12
62

93
2

#1

su

b
.b

as
ic

14

1
10

00

54

92

25
39

85

54
92

25

19
69

54

92

26
91

40

25
83

64
.7

25

83
50

.4

54
92

49

36
25

54

92

48
01

09

54
92

49

78
44

49

05
26

49

02
61

.6

#2

pu
b

.b
as

ic

11
41

10

00

#3

su

b
.b

as
ic

14

4
10

00

59

67

25
39

85

59
67

25

19
85

59

67

26
91

40

25
83

70

59

67

49
36

87

59
67

48

00
94

59

67

49
77

97

49
05

26

#5

su

b
.b

as
ic

14

3
10

00

57

32

25
39

69

57
32

25

19
69

57

32

26
91

41

25
83

59
.7

57
32

49

36
56

57

32

48
00

94

57
32

49

78
44

49

05
31

.3

#6

su

b
.b

as
ic

14

2
10

00

62

96

25
39

07

62
96

25

19
06

62

96

26
91

09

25
83

07
.3

62
96

49

35
46

62

96

47
70

15

62
96

49

78
28

48

94
63

goodelle
Text Box
60

goodelle
Text Box

10
.3

.2

So
ftw

ar
e

JB
I –

 2
5K

B
 a

nd
 5

0K
B

 O
bj

ec
t S

iz
e

25
K

B
 O

bj
ec

t S
iz

e

50
K

B
 O

bj
ec

t S
iz

e

C
om

pu
te

r
A

ct
io

n
O

bj
ec

tT
yp

e
S

ee
d

O
bj

ec
t

O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
A

vg
Ti

m
e

O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
A

vg
Ti

m
e

#2

pu

b
.b

as
ic

11

41

10
00

#3

su
b

.b
as

ic

14
2

10
00

62
96

42

35
45

62

96

43
74

22

62
96

43

53
59

43

21
08

.7

43
20

59
.3

62

96

68
13

59

62
96

70

09
69

62

96

69
60

00

69
27

76

69
26

92
.5

#5

su

b
.b

as
ic

14

1
10

00

54

92

42
33

90

54
92

43

72
81

54

92

43
53

59

43
20

10

54

92

68
11

40

54
92

70

07
50

54

92

69
59

37

69
26

09

#1

su

b
.b

as
ic

14

1
25

0

45
1

54
50

0
45

1
50

64
1

45
1

55
07

8
53

40
6.

33

53
09

0.
22

45

1
80

29
7

45
1

79
48

4
45

1
80

21
8

79
99

9.
67

79

89
5.

78

#2

pu
b

.b
as

ic

11
41

25

0

#3

su
b

.b
as

ic

14
3

25
0

38

5
51

96
8

38
5

50
46

8
38

5
54

95
4

52
46

3.
33

38
5

80
00

0
38

5
79

14
0

38
5

79
86

0
79

66
6.

67

#5

su

b
.b

as
ic

14

2
25

0

47
6

54
43

8
47

6
50

65
6

47
6

55
10

9
53

40
1

47

6
80

35
9

47
6

79
59

4
47

6
80

11
0

80
02

1

#1

su
b

.b
as

ic

14
1

50
0

15

19

16
97

97

15
19

17

24
84

15

19

17
16

72

17
13

17
.7

17

13
33

.3

15
19

26

96
56

15

19

27
67

60

15
19

26

70
62

27

11
59

.3

27
11

99
.1

#2

pu

b
.b

as
ic

11

41

50
0

#3

su

b
.b

as
ic

14

3
50

0

15
49

16

95
94

15

49

17
25

78

15
49

17

17
35

17

13
02

.3

15

49

26
97

19

15
49

27

68
44

15

49

26
70

31

27
11

98

#5

su

b
.b

as
ic

14

2
50

0

16
72

16

97
65

16

72

17
26

09

16
72

17

17
66

17

13
80

16
72

26

97
97

16

72

27
68

44

16
72

26

70
79

27

12
40

#1

su
b

.b
as

ic

14
1

10
00

54
92

65

60
63

54

92

64
32

50

54
92

64

62
66

64

85
26

.3

64
85

93
.9

54

92

10
18

53
1

54
92

10

16
51

6
54

92

10
12

37
5

10
15

80
7

10
16

01
0

#2

pu
b

.b
as

ic

11
41

10

00

#3

su

b
.b

as
ic

14

3
10

00

57

32

65
61

57

57
32

64

35
47

57

32

64
61

41

64
86

15

57

32

10
18

87
5

57
32

10

16
59

4
57

32

10
12

25
0

10
15

90
6

#5

su

b
.b

as
ic

14

2
10

00

62

96

65
62

19

62
96

64

34
68

62

96

64
62

34

64
86

40
.3

62
96

10

19
01

5
62

96

10
16

93
7

62
96

10

13
00

0
10

16
31

7

#1

su
b

.b
as

ic

14
1

20
00

22
86

0
32

54
39

0
22

86
0

31
51

00
0

22
86

0
32

60
14

1
32

21
84

4
32

21
91

5
22

86
0

56
09

26
6

22
86

0
52

35
29

7
22

86
0

53
38

53
2

53
94

36
5

53
94

46
7

#2

pu
b

.b
as

ic

11
41

20

00

#3

su

b
.b

as
ic

14

3
20

00

23

70
2

32
54

56
2

23
70

2
31

50
87

5
23

70
2

32
60

10
9

32
21

84
9

23

70
2

56
09

28
1

23
70

2
52

35
29

6
23

70
2

53
38

45
4

53
94

34
4

#5

su

b
.b

as
ic

14

2
20

00

22

76
5

32
54

64
1

22
76

5
31

51
23

5
22

76
5

32
60

28
2

32
22

05
3

22

76
5

56
09

71
9

22
76

5
52

35
62

5
22

76
5

53
38

73
4

53
94

69
3

#1

su

b
.b

as
ic

14

1
10

00

54

92

95
77

81

54
92

93

91
10

54

92

87
90

78

92
53

23

92
54

48

54
92

16

38
37

5
54

92

15
24

43
7

54
92

15

31
32

8
15

64
71

3
15

64
90

1
#2

pu

b
.b

as
ic

11

41

10
00

#3

su
b

.b
as

ic

14
4

10
00

59
67

95

75
16

59

67

93
93

59

59
67

87

93
60

92

54
11

.7

59

67

16
38

42
1

59
67

15

24
50

0
59

67

15
32

10
9

15
65

01
0

#5

su

b
.b

as
ic

14

3
10

00

57

32

95
78

12

57
32

93

94
53

57

32

87
92

50

92
55

05

57

32

16
37

98
5

57
32

15

24
45

3
57

32

15
32

06
2

15
64

83
3

#6

su

b
.b

as
ic

14

2
10

00

62

96

95
78

13

62
96

93

94
84

62

96

87
93

60

92
55

52
.3

62
96

16

38
46

9
62

96

15
24

56
3

62
96

15

32
10

9
15

65
04

7

goodelle
Text Box
61

6

10
.4

 E
xp

er
im

en
t 4

10
.4

.1

H
ar

dw
ar

e
JB

I –
 O

bj
ec

t S
iz

e
2K

B

C
om

pu
te

r
A

ct
io

n
O

bj
ec

tT
yp

e
S

ee
d

O
bj

ec
t

O
bj

R
ec

v
Ti

m
e

O

bj
R

ec
v

Ti
m

e

O

bj
R

ec
v

Ti
m

e
A

vg
Ti

m
e

#1

pu

b
.b

as
ic

11

51

25
0

#2

pu

b
.x

m
lx

pa
th

11

52

25
0

#3

pu

b
.a

to

11
53

25

0
O

bj
R

ec
v

Ti
m

e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

#5

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

1-
15

3
25

0
23

5
14

45
3

31
3

14
30

2
14

40
6

23
5

15
11

0
31

3
14

73
5

23
5

16
73

4
31

3
16

22
4

15
08

6.
89

15

19
1.

94

66

0
15

51
5

66

0
15

56
3

66
0

17
03

1

44

12
93

8

44

13
53

1

44

14

90
7

#6

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

4-
15

6
25

0
26

1
14

59
4

26
7

14
51

0

26
1

15
18

8
26

7
14

92
7

26
1

16
89

1
26

7
16

45
3

15
29

7

44

0
15

51
5

44

0
15

56
3

44
0

17
03

1

10
0

13
42

2

10
0

14
03

1

10

0
15

43
8

#1

pu
b

.b
as

ic

11
51

50

0

#2

pu
b

.x
m

lx
pa

th

11
52

50

0
20

-A
pr

#3

pu

b
.a

to

11
53

50

0
O

bj
R

ec
v

Ti
m

e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

#5

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

1-
15

3
50

0
10

01

36
26

5
11

87

35
65

1
35

66
1

10
01

39

09
4

11
87

37

41
7

10
01

37

81
3

11
87

36

07
8

36
38

2
36

39
1.

5

21
80

37

57
8

21

80

39
18

8

21

80

37
53

1

37
9

33
10

9

37
9

33
96

9

37

9
32

89
1

#6

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

4-
15

6
50

0
12

97

36
26

5
10

71

35
67

2

12
97

39

10
9

10
71

37

45
3

12
97

37

79
7

10
71

36

07
8

36
40

1

16

38

37
56

3

16
38

39

18
8

16
38

37

51
6

27

9
33

18
7

27

9
34

06
3

27
9

32
92

1

#1

pu

b
.b

as
ic

11

51

10
00

#2

pu
b

.x
m

lx
pa

th

11
52

10

00

20
-A

pr

#3

pu
b

.a
to

11

53

10
00

O

bj
R

ec
v

Ti
m

e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

#5

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

1-
15

3
10

00

56
56

10

88
91

57

32

10
43

07

10
43

78

56
56

12

10
78

57

32

11
48

85

56
56

11

54
37

57

32

10
69

95

10
87

29
.1

10

88
09

.9

10

41
4

11
11

25

10

41
4

12
37

65

10
41

4
11

97
34

11
26

92

90
6

11

26

99
81

3

11

26

85
81

3

#6

su

b
.b

as
ic

, .
xm

lx
pa

th
, .

at
o

15
4-

15
6

10
00

55

76

10
88

91

50
20

10

44
48

55
76

12

10
93

50

20

11
50

83

55
76

11

54
07

50

20

10
71

41

10
88

90
.7

86

93

11
10

94

86

93

12
37

81

86
93

11

97
35

79
1

93
35

9

79
1

10
03

75

79
1

86
28

1

#1

pu

b
.b

as
ic

11

51

#2

pu
b

.x
m

lx
pa

th

11
52

19
-A

pr

#3

pu
b

.a
to

11

53

O

bj
R

ec
v

Ti
m

e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

#5

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

1-
15

3
20

00

22
05

7
36

00
47

21

12
7

34
43

91

34
43

86

22
05

7
33

11
09

21

12
7

32
41

45

22
05

7
33

48
59

21

12
7

32
81

61

33
22

32
.4

33

22
29

.1

37

86
0

38
87

97

37

86
0

35
84

37

37
86

0
36

29
22

34
63

28

43
28

34
63

28

28
90

34

63

28
67

03

#6

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

4-
15

6
20

00

22
68

6
36

00
31

20

31
2

34
43

80

22

68
6

33
11

41

20
31

2
32

41
46

22

68
6

33
48

75

20
31

2
32

81
51

33

22
25

.8

35
48

4
38

87
81

35
48

4
35

84
06

35

48
4

36
28

75

27

66

28
43

29

27

66

28
28

91

27
66

28

67
03

goodelle
Text Box

goodelle
Text Box
62

10
.4

.2

So
ftw

ar
e

JB
I –

 O
bj

ec
t S

iz
e

2K
B

C

om
pu

te
r

Ac
tio

n
O

bj
ec

tT
yp

e
S

ee
d

O
bj

ec
t

O
bj

R
ec

v
Ti

m
e

O

bj
R

ec
v

Ti
m

e

O

bj
R

ec
v

Ti
m

e
A

vg
Ti

m
e

#1

pu

b
.b

as
ic

11

51

25
0

#2

pu

b
.x

m
lx

pa
th

11

52

25
0

#3

pu

b
.a

to

11
53

25

0
O

bj
R

ec
v

Ti
m

e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

#5

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

1-
15

3
25

0
23

5
36

90
6

31
3

35
62

5
35

86
5

23
5

33
84

4
31

3
22

53
5

23
5

34
56

2
31

3
33

59
3

30
58

4.
33

32

54
6.

61

66

0
36

14
1

66

0
24

00

66
0

33
59

3

44

33
82

8

44

31
36

0

44

32

62
5

#6

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

4-
15

6
25

0
26

1
37

00
0

26
7

36
10

4

26
1

34
03

2
26

7
33

46
4

26
1

34
67

2
26

7
33

95
8

34
50

8.
89

44

0
36

17
2

44

0
33

98
5

44
0

33
65

6

10
0

35
14

1

10
0

32
37

5

10

0
33

54
7

#1

pu
b

.b
as

ic

11
51

50

0

#2

pu
b

.x
m

lx
pa

th

11
52

50

0

#3

pu
b

.a
to

11

53

50
0

O
bj

R
ec

v
Ti

m
e

O

bj
R

ec
v

Ti
m

e

O

bj
R

ec
v

Ti
m

e

#5

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

1-
15

3
50

0
10

01

11
64

53

11
87

11

17
13

11

17
24

10

01

10
80

94

11
87

10

26
09

10

01

10
77

03

11
87

10

06
09

10

49
77

.2

10
49

80

21

80

11
09

53

21

80

10
12

18

21
80

98

20
3

37

9
10

77
34

37
9

98
51

5

37

9
95

92
2

#6

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

4-
15

6
50

0
12

97

11
65

31

10
71

11

17
34

12
97

10

81
10

10

71

10
26

10

12
97

10

78
28

10

71

10
06

04

10
49

82
.8

16

38

11
09

69

16

38

10
12

19

16
38

98

18
8

27

9
10

77
03

27
9

98
50

0

27

9
95

79
7

#1

pu
b

.b
as

ic

11
51

10

00

#2

pu

b
.x

m
lx

pa
th

11

52

10
00

#3

pu
b

.a
to

11

53

10
00

O

bj
R

ec
v

Ti
m

e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

#5

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

1-
15

3
10

00

56
56

50

47
50

57

32

48
13

13

48
16

59

56
56

44

83
59

57

32

43
33

39

56
56

48

48
44

57

32

46
94

22

46
13

57
.8

46

16
20

.7

10

41
4

48
40

47

10

41
4

43
95

78

10
41

4
47

36
25

11
26

45

51
41

11
26

41

20
79

11

26

44
97

97

#6

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

4-
15

6
10

00

55
76

50

47
19

50

20

48
20

05

55

76

44
83

44

50
20

43

38
18

55

76

48
48

59

50
20

46

98
28

46

18
83

.7

86
93

48

40
00

86
93

43

95
62

86

93

47
36

09

79

1
45

72
97

79
1

41
35

47

79
1

45
10

16

#1

pu
b

.b
as

ic

11
51

#2

pu

b
.x

m
lx

pa
th

11

52

#3

pu
b

.a
to

11

53

O

bj
R

ec
v

Ti
m

e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

#5

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

1-
15

3
20

00

22
05

7
26

37
09

4
21

12
7

24
58

47
9

24
58

18
0

22
05

7
27

90
45

3
21

12
7

25
91

84
3

22
05

7
25

79
53

2
21

12
7

24
34

74
5

24
95

02
3

24
94

96
7

37

86
0

25
91

56
3

37

86
0

27
61

96
8

37
86

0
25

08
68

7

34
63

21

46
78

1

34
63

22

23
10

9

34

63

22
16

01
6

#6

su
b

.b
as

ic
, .

xm
lx

pa
th

, .
at

o
15

4-
15

6
20

00

22
68

6
26

35
04

7
20

31
2

24
57

88
0

22

68
6

27
90

45
3

20
31

2
25

91
91

7
22

68
6

25
79

60
9

20
31

2
24

34
93

7
24

94
91

1

35

48
4

25
91

71
9

35

48
4

27
61

92
2

35
48

4
25

08
70

3

27
66

21

46
87

5

27
66

22

23
37

5

27

66

22
16

50
0

goodelle
Text Box
63

10
.5

 E
xp

er
im

en
t 5

10
.5

.1

H
ar

dw
ar

e
JB

I –
 O

bj
ec

t S
iz

e
2K

B

C
om

pu
te

r
A

ct
io

n
O

bj
ec

tT
yp

e
S

ee
d

O
bj

ec
t

O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
A

vg
Ti

m
e

#1

su
b

.x
m

lx
pa

th

17
1

25
0

28

43

21
17

2
28

43

19
81

3
28

43

19
75

0
20

24
5

#2

pu
b

.x
m

lx
pa

th

11
71

25

0

#3

pu

b
.x

m
lx

pa
th

11

72

25
0

#5

pu
b

.x
m

lx
pa

th

11
73

25

0

#6

pu

b
.x

m
lx

pa
th

11

74

25
0

#1

su

b
.x

m
lx

pa
th

17

1
50

0

10
20

9
39

86
0

10
20

9
39

03
1

10
20

9
39

75
0

39
54

7
#2

pu

b
.x

m
lx

pa
th

11

71

50
0

#3

pu
b

.x
m

lx
pa

th

11
72

50

0

#5

pu

b
.x

m
lx

pa
th

11

73

50
0

#6

pu
b

.x
m

lx
pa

th

11
74

50

0

#1

su
b

.x
m

lx
pa

th

17
1

10
00

39
53

5
90

78
1

39
53

5
91

10
9

39
53

5
96

10
9

92
66

6.
33

#2

pu

b
.x

m
lx

pa
th

11

71

10
00

#3

pu

b
.x

m
lx

pa
th

11

72

10
00

#5

pu

b
.x

m
lx

pa
th

11

73

10
00

#6

pu

b
.x

m
lx

pa
th

11

74

10
00

#1

su
b

.x
m

lx
pa

th

17
1

20
00

15
11

11

23
93

59

15
11

11

23
99

37

15
11

11

24
34

84

24
09

26
.7

#2

pu

b
.x

m
lx

pa
th

11

71

20
00

#3

pu

b
.x

m
lx

pa
th

11

72

20
00

#5

pu

b
.x

m
lx

pa
th

11

73

20
00

#6

pu

b
.x

m
lx

pa
th

11

74

20
00

goodelle
Text Box
64

10
.5

.2

So
ftw

ar
e

JB
I –

 O
bj

ec
t S

iz
e

2K
B

C

om
pu

te
r

A
ct

io
n

O
bj

ec
tT

yp
e

S
ee

d
O

bj
ec

t

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

A
vg

Ti
m

e
#1

su

b
.x

m
lx

pa
th

17

1
25

0

28
43

34

65
7

28
43

34

12
5

28
43

33

45
3

34
07

8.
33

#2

pu

b
.x

m
lx

pa
th

11

71

25
0

#3

pu
b

.x
m

lx
pa

th

11
72

25

0

#5

pu

b
.x

m
lx

pa
th

11

73

25
0

#6

pu
b

.x
m

lx
pa

th

11
74

25

0

#1

su
b

.x
m

lx
pa

th

17
1

50
0

10

20
9

87
64

1
10

20
9

85
57

8
10

20
9

85
42

2
86

21
3.

67

#2

pu
b

.x
m

lx
pa

th

11
71

50

0

#3

pu

b
.x

m
lx

pa
th

11

72

50
0

#5

pu
b

.x
m

lx
pa

th

11
73

50

0

#6

pu

b
.x

m
lx

pa
th

11

74

50
0

#1

su

b
.x

m
lx

pa
th

17

1
10

00

39

53
5

47
68

59

39
53

5
49

47
50

39

53
5

48
48

75

48
54

94
.7

#2

pu

b
.x

m
lx

pa
th

11

71

10
00

#3

pu

b
.x

m
lx

pa
th

11

72

10
00

#5

pu

b
.x

m
lx

pa
th

11

73

10
00

#6

pu

b
.x

m
lx

pa
th

11

74

10
00

#1

su
b

.x
m

lx
pa

th

17
1

20
00

15
11

11

cr
as

h
15

11
11

cr

as
h

15
11

11

cr
as

h
#D

IV
/0

!
#2

pu

b
.x

m
lx

pa
th

11

71

20
00

#3

pu

b
.x

m
lx

pa
th

11

72

20
00

#5

pu

b
.x

m
lx

pa
th

11

73

20
00

#6

pu

b
.x

m
lx

pa
th

11

74

20
00

goodelle
Text Box
65

10
.6

 E
xp

er
im

en
t 6

10
.6

.1

H
ar

dw
ar

e
JB

I –
 O

bj
ec

t S
iz

e
2K

B

C
om

pu
te

r
A

ct
io

n
O

bj
ec

tT
yp

e
S

ee
d

O
bj

ec
t

O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
O

bj
R

ec
v

Ti
m

e
A

vg
Ti

m
e

#1

pu
b

.x
m

lx
pa

th

11
71

25

0

#2

pu

b
.x

m
lx

pa
th

11

72

25
0

#3

pu
b

.x
m

lx
pa

th

11
73

25

0

#5

su

b
.x

m
lx

pa
th

17

1
25

0

28
43

25

57
7

28
43

25

76
8

28
43

24

21
5

25
18

6.
67

#6

pu

b
.x

m
lx

pa
th

11

74

25
0

#1

pu

b
.x

m
lx

pa
th

11

71

50
0

#2

pu
b

.x
m

lx
pa

th

11
72

50

0

#3

pu

b
.x

m
lx

pa
th

11

73

50
0

#5

su
b

.x
m

lx
pa

th

17
1

50
0

10

20
9

62
80

0
10

20
9

62
54

0
10

20
9

63
71

2
63

01
7.

33

#6

pu
b

.x
m

lx
pa

th

11
74

50

0

#1

pu
b

.x
m

lx
pa

th

11
71

10

00

#2

pu
b

.x
m

lx
pa

th

11
72

10

00

#3

pu
b

.x
m

lx
pa

th

11
73

10

00

#5

su
b

.x
m

lx
pa

th

17
1

10
00

39
53

5
20

66
08

39

53
5

20
91

01

39
53

5
20

83
40

20

80
16

.3

#6

pu
b

.x
m

lx
pa

th

11
74

10

00

#1

pu

b
.x

m
lx

pa
th

11

71

20
00

#2

pu

b
.x

m
lx

pa
th

11

72

20
00

#3

pu

b
.x

m
lx

pa
th

11

73

20
00

#5

su

b
.x

m
lx

pa
th

17

1
20

00

15

11
11

76

91
36

15

11
11

66

48
65

15

11
11

76

84
05

73

41
35

.3

#6

pu
b

.x
m

lx
pa

th

11
74

20

00

goodelle
Text Box
66

10
.6

.2

So
ftw

ar
e

JB
I –

 O
bj

ec
t S

iz
e

2K
B

C

om
pu

te
r

A
ct

io
n

O
bj

ec
tT

yp
e

S
ee

d
O

bj
ec

t

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

O
bj

R
ec

v
Ti

m
e

A
vg

Ti
m

e
#1

pu

b
.x

m
lx

pa
th

11

71

25
0

#2

pu
b

.x
m

lx
pa

th

11
72

25

0

#3

pu

b
.x

m
lx

pa
th

11

73

25
0

#5

su
b

.x
m

lx
pa

th

17
1

25
0

28

43

43
54

3
28

43

35
54

1
28

43

35
23

1
38

10
5

#6

pu
b

.x
m

lx
pa

th

11
74

25

0

#1

pu
b

.x
m

lx
pa

th

11
71

50

0

#2

pu

b
.x

m
lx

pa
th

11

72

50
0

#3

pu
b

.x
m

lx
pa

th

11
73

50

0

#5

su

b
.x

m
lx

pa
th

17

1
50

0

10
20

9
10

05
45

10

20
9

99
73

3
10

20
9

92
05

3
97

44
3.

67

#6

pu
b

.x
m

lx
pa

th

11
74

50

0

#1

pu
b

.x
m

lx
pa

th

11
71

10

00

#2

pu
b

.x
m

lx
pa

th

11
72

10

00

#3

pu
b

.x
m

lx
pa

th

11
73

10

00

#5

su
b

.x
m

lx
pa

th

17
1

10
00

39
53

5
64

61
90

39

53
5

64
05

51

39
53

5
66

63
78

65

10
39

.7

#6

pu
b

.x
m

lx
pa

th

11
74

10

00

#1

pu

b
.x

m
lx

pa
th

11

71

20
00

#2

pu

b
.x

m
lx

pa
th

11

72

20
00

#3

pu

b
.x

m
lx

pa
th

11

73

20
00

#5

su

b
.x

m
lx

pa
th

17

1
20

00

cr
as

h

cr
as

h

cr
as

h
#D

IV
/0

!
#6

pu

b
.x

m
lx

pa
th

11

74

20
00

goodelle
Text Box
67

68

11 List of Acronyms

B 1 byte

CAPI Common Application Programming Interface

CPU Central Processing Unit

HTTP Hyper-Text Transfer Protocol

IP Internet Protocol

JBI Joint Battlespace Infosphere

JMS Java Messaging System

KB Kilobyte (1024 B)

MB Megabyte (1024 KB)

RMI Remote Method Invocation

SDK Software Development Kit

TCP Transmission Control Protocol

UDP User Datagram Protocol

XML eXtensible Markup Language

XPATH XML Path Language

